
OAuth 2.0 is an elaborate framework, which continuously evolves to address current needs and security considerations. The 
framework is even evolving into a consolidated OAuth 2.1 specification. This cheat sheet offers an overview of current security 
best practices for developers building OAuth 2.x client applications.

OAuth 2.0 best practices for developers
Version 2025.001

Security Cheat Sheet

Use the Authorization Code flow in every redirect scenario

https://ti.to/pragmatic-web-security/oauth-security-may-2025-eur

Want to master OAuth 2.0 and OpenID Connect?
Join this upcoming training, covering best practices, updated guidelines for SPAs, and advanced scenarios

Best practices 
for SPAs and APIs

Always use Proof Key for Code Exchange (PKCE)
The client includes a challenge based on a secret in Step 2
The client includes the secret verifier in Step 8

Consider Resource Indicators to minimize access tokens
This reduces the authority of an access token to a single API

Restrict the capabilities of bearer access tokens
Keep the lifetime of access tokens as short as possible
Use scopes to restrict the permissions associated with a token

Use key-based client authentication in Step 8
Key-based client authentication avoids the use of a shared secret

Encrypt access tokens and refresh tokens in storage
Store the encryption keys using a secret management service

Do not use OAuth 2.0 directly in frontend clients
Using OAuth 2.0 in a frontend increases the attack surface 

Use a system browser instead of an embedded browser
On iOS, use ASWebAuthenticationSession to run the flow

Encrypt access tokens and refresh tokens in storage
Store the encryption keys in a key store provided by the OS

Recommendations for backend clients

Recommendations for frontend web clients

Recommendations for native clients

General recommendations

The client obtains an access token per API with the refresh token

Use sender-constrained tokens instead of bearer tokens
Sender-constrained access tokens are bound to a secret key
The client proves possession of the key when using the token
Can be implemented with mTLS (RFC 8705) or DPoP (RFC 9449)

Can be implemented with mTLS (RFC 8705) or JWT (RFC 7523)

Use Pushed Authorization Requests (PAR) (RFC 9126) 
The client pushes the config to the server at the start of the flow
PAR doesn’t expose the authorization request to the frontchannel

Review the threat model in the current draft spec

Use a Backend-for-Frontend (BFF) to handle OAuth 2.0
The BFF acts as a backend client to the authorization server
The BFF uses a session to keep track of the user’s tokens 
The BFF proxies API calls and attaches the user’s access token 

Make the use of a BFF the default for frontends
Build or use a BFF library to simplify BFF deployment
BFFs do not contain business logic and can easily be reused

On Android, use Chrome Custom Tabs to run the flow

Keep an eye on the draft spec for first-party applications
This spec aims to enable in-app authentication for 1st party apps

A well-designed BFF library only needs a few lines of config

https://ti.to/pragmatic-web-security/oauth-security-may-2025-eur
https://datatracker.ietf.org/doc/html/rfc8705
https://datatracker.ietf.org/doc/html/rfc9449
https://datatracker.ietf.org/doc/html/rfc8705
https://datatracker.ietf.org/doc/html/rfc7523
https://datatracker.ietf.org/doc/html/rfc9126
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-browser-based-apps.html
https://datatracker.ietf.org/doc/draft-ietf-oauth-first-party-apps/

