
@PhilippeDeRyck – philippe@PragmaticWebSecurity.comPHILIPPE DE RYCK

THE TRUTH ABOUT COOKIES, TOKENS AND APIS

@PhilippeDeRyck 2

@PhilippeDeRyck 3

Authenticate

Request a resource

Authenticate

Request a resource

@PhilippeDeRyck 4

Authenticate

Request a resource

Authenticate

Request a resource

12345678

Cookie: ID=12345678

Authorization: Bearer …

Cookie jar

localStorage

@PhilippeDeRyck 5

Pragmatic Web Security

High-quality security training for developers and managers

- Deep understanding of the web security landscape

- Google Developer Expert (not employed by Google)

DR. PHILIPPE DE RYCK

- Author of the primer on client-side web security

Custom courses covering web security, API security, Angular security, …

- Course curator of the SecAppDev course
(https://secappdev.org)

@PHILIPPEDERYCK

HTTPS://PRAGMATICWEBSECURITY.COM

@PhilippeDeRyck 6

Works fine with
a stateful
backend

Might benefit
from a stateless
(REST) backend

@PhilippeDeRyck 7

DO NOT OVERTHINK STATELESSNESS

There are various degrees of statelessness, each
with its own use cases.

Build your API according to your requirements.

@PhilippeDeRyck 8

Cookie: ID=12345678

Cookie: JWT=eyJhbGci…

Authorization: Bearer 12345678

Authorization: Bearer eyJhbGci…

@PhilippeDeRyck 9

Authenticate & Authorize

Authorization code C

C C

@PhilippeDeRyck 10

Authenticate & Authorize

Authorization code C

C C

@PhilippeDeRyck 11

Authenticate & Authorize

Authorization code C

C C Metadata

{
"active": true
"client_id": "PragmaticWebSecurity",
"sub": "Z5O3upPC88QrAjx00dis"
"exp": 1419356238,
"scope": "read write"

}

“ “
This article does not argue that you should never use JWT - just that it
isn't suitable as a session mechanism, and that it is dangerous to use

it like that. Valid usecases do exist for them, in other areas.

@PhilippeDeRyck 13

DIFFERENTIATE THE MECHANISM FROM THE VALUE

Cookies or the Authorization header can be used
to transport authorization state.

Both can contain any type of String-based value.

@PhilippeDeRyck 15api.restograde.com

reviews.restograde.com

social.example.com

Cookie: … Authorization: Bearer …

@PhilippeDeRyck 16

TAKE YOUR DEPLOYMENT SCENARIO INTO ACCOUNT

Cookies only work well with a single backend domain.

The Authorization header can be sent
to multiple domains.

@PhilippeDeRyck 17

@PhilippeDeRyck 18

“ “The browser offers a storage that can’t be read by JavaScript:
HttpOnly cookies. It’s a good way to identify a requester

without risking XSS attacks.

@PhilippeDeRyck 20

HttpOnly cookies
HttpOnly is useful, but not as an XSS defense

@PhilippeDeRyck

THE DEAL WITH HTTPONLY

• The HttpOnly flag resolves a consequence of an XSS attack
• Stealing the session identifier becomes a lot harder
• But you still have an XSS vulnerability in your application

• XSS allows the attacker to execute arbitrary code
• That code can trigger authenticated requests, modify the DOM, ...

• HttpOnly is still recommended, because it raises the bar
• XSS attacks become a little bit harder to execute and to persist
• XSS attacks from subdomains become less powerful (with domain-based cookies)

• In Chrome, HttpOnly prevents cookies from entering the rendering process
• Useful to reduce the impact of CPU-based Spectre and Meltdown attacks

21

@PhilippeDeRyck

COMPARING CLIENT-SIDE STORAGE MECHANISMS

22

Available to the
entire origin

LOCALSTORAGE SESSIONSTORAGE IN-MEMORY COOKIES

Survives a page
reload

Cannot be shielded
from malicious code

Can be abused in
case of XSS

Available to the
window and children

Survives a page
reload

Can be a bit shielded
from malicious code

Can be abused in
case of XSS

Available to running
code only

Does not survive a
page reload

Can be shielded from
malicious code

Can be abused in
case of XSS

Available on
outgoing requests

Survives a page
reload

Can be shielded from
malicious code

Can be abused in
case of XSS

@PhilippeDeRyck 23

DON'T UNDERESTIMATE XSS

Contrary to custom storage areas, cookies can be fully
hidden from JavaScript, preventing theft through XSS.

XSS is the problem here, and HttpOnly will not save you

@PhilippeDeRyck 24

Set-Cookie: __Host-name=value; Secure; HttpOnly

Set-Cookie: name=value; Secure

Set-Cookie: name=value

Set-Cookie: name=value; Secure; HttpOnly

Set-Cookie: __Secure-name=value; Secure; HttpOnly

@PhilippeDeRyck 25

@PhilippeDeRyck 26

@PhilippeDeRyck 27

THERE IS NO FREE LUNCH

Both mechanisms require effort to secure.

Cookies need flags and prefixes, and the Authorization
header needs to be controlled in code

@PhilippeDeRyck 28

<script src="admin/allTheCode.js"></script>

@PhilippeDeRyck 29

xhr = new XMLHttpRequest();
xhr.open("GET", "https://restograde.com");
xhr.withCredentials = true;
xhr.send();

@PhilippeDeRyck 30

new WebSocket("wss://restograde.com");

@PhilippeDeRyck 31

COOKIES ARE ALWAYS THERE

Cookies are present on every browser-initiated request,
while the Authorization header is not.

If you depend on authorization for these features,
consider using cookies.

@PhilippeDeRyck 32

Load unrelated page

Legitimate
requests within
the application

Restograde
context

Maliciousfood
context Forged requests

@PhilippeDeRyck 33

CSRF
LJ

@PhilippeDeRyck

CSRF PROTECTION IN AN API WORLD

• If state-changing requests can only be sent from XHR, rely on CORS
• Force the use of a non-form content type, so the requests fall within CORS

• E.g., application/json

• For cross-origin requests, the browser always sends an Origin header

• If requests can be forged from HTML elements, use the double submit cookie
• The server needs to set the cookie, and check incoming requests for the secret value
• Angular supports this out of the box when frontend and backend run in the same domain

• API calls that can be forged from HTML should be avoided if possible
• Double submit cookies only work well within a single domain
• Plugins can forge requests across domains with arbitrary origin headers

34

@PhilippeDeRyck

EXOTIC WAYS TO FAKE THE ORIGIN HEADER WITH ADOBE PDF

35

@PhilippeDeRyck 36

COOKIES ARE ALWAYS THERE

Cookies are present on every browser-initiated request,
even when it originates from an attacker's page.

If you use cookies, implement CSRF protection.

@PhilippeDeRyck 37

Authenticate & Authorize

Authorization code C

C C

@PhilippeDeRyck 38

Authorize

Authorization code C

C C

@PhilippeDeRyck 39

Authorize

Authorization code C

C C

@PhilippeDeRyck 40

COOKIES ARE INHERENT TO THE WEB (FOR NOW)

Cookies are inherent to the web and are the only reliable
way to propagate state.

For now, secure your cookies, and lookout for the future.

@PhilippeDeRyck 41https://mikewest.github.io/http-state-tokens/draft-west-http-state-tokens.html

@PhilippeDeRyck 42[1] https://mikewest.github.io/http-state-tokens/draft-west-http-state-tokens.html

@PhilippeDeRyck

COOKIES ARE PART OF THE WEB, WHETHER YOU LIKE IT OR NOT

They work well with a single domain, for all types of requests
They require flags and prefixes to lock 'em down

THE AUTHORIZATION HEADER WITH BEARER TOKENS IS FLEXIBLE

They work well, even in multi-domain scenarios
They require application code and are not always there

PROPOSAL TO REPLACE COOKIES WITH HTTP STATE TOKENS

Client generates the value
Server offers additional security features (e.g., signing key)

@PhilippeDeRyck 44https://cheatsheets.pragmaticwebsecurity.com/

FREE SECURITY CHEAT SHEETS FOR MODERN APPLICATIONS

@PhilippeDeRyck – philippe@PragmaticWebSecurity.comPHILIPPE DE RYCK

/in/PhilippeDeRyck @PhilippeDeRyck

philippe@pragmaticwebsecurity.com

