Pragmatic Web Security

THE TRUTH ABOUT COOKIES, TOKENS AND APIs

PHILIPPE DE RYCK @PhilippeDeRyck — philippe@PragmaticWebSecurity.com

Web Application Frameworks AngularJS Application Programming Interfaces (API)

Web Applications Web Development

How can I use session management, if I am using
AngularJS in client side and web API to supply data
to it? What is the architecture to build a complete
application when I am using the new client side
frameworks to build a web app?

9 Answers

y @PhilippeDeRyck

Authenticate

_©

BROWSER

Request a resource

BACKEND

Authenticate

Request a resource

BROWSER BACKEND

’ @PhilippeDeRyck

Authentlcate

Request a resource .
Cookie: ID=12345678

Cookie jar

BROWSER

12345678
BACKEND
Authenticate

N ..y

localStorage

Request a resource

Authorization: Bearer ...

BROWSER BACKEND

’ @PhilippeDeRyck 4

DR. PHILIPPE DE RYCK

- Deep understanding of the web security landscape

- Google Developer Expert (not employed by Google)

Author of the primer on client-side web security

Course curator of the :: SecAppDev course
(https://secappdev.org)

@PHILIPPEDERYCK
HTTPS://PRAGMATICWEBSECURITY.COM

High-quality security training for developers and managers

Custom courses covering web security, APl security, Angular security, ...

Works fine with ‘ ‘ “ ‘
a stateful

backend ‘

Might benefit
from a stateless
(REST) backend

CLIENT CLIENT CLIENT CLIENT

’ @PhilippeDeRyck

There are various degrees of statelessness, each
with its own use cases.

Build your API according to your requirements.

, @PhilippeDeRyck

Cookie: ID=12345678
Authorization: Bearer 12345678

Cookie: JWT=eyJhbGci...
Authorization: Bearer eyJhbGci...

Authenticate & Authorize

]

BROWSER

SERVER

RESOURCE
SERVER

CLIENT

’ @PhilippeDeRyck

PAYLOAD: DATA

{
E "sub": "philippe@secappdev.org",

"azp": "PragmaticWebSecurity”,

iss": "https://twitter.example.com/",

"exp": 1419356238,

"iat": 1419350238,

"scope”: "read write",

"jti": "405b4d4e-8501-4el1a-a138-ed8455cd1d47"

BROWSER

RESOURCE
SERVER

CLIENT

’ @PhilippeDeRyck

10

Authenticate & Authorize

]

BROWSER

AUTHORIZATION
SERVER

Authorization code G

Metadata

"active": true
"client id": "PragmaticWebSecurity"”,
"sub": "Z503upPC88QrAjx00dis"”

"exp": 1419356238,
"scope": "read write"

RESOURCE
SERVER

’ @PhilippeDeRyck

11

joepie91's Ramblings

Stop using JWT for sessions

13 Jun 2016

Update - June 19, 2016: A lot of people have been suggesting the same "solutions" to the
problems below, but none of them are practical. I've published a new post with a slightly
sarcastic flowchart - please have a look at it before suggesting a solution.

d

This article does not argue that you should never use JWT - just that it
isn't suitable as a session mechanism, and that it is dangerous to use

it like that. Valid usecases do exist for them, in other areas. ”

Cookies or the Authorization header can be used
to transport authorization state.

Both can contain any type of String-based value.

, @PhilippeDeRyck

BACKEND

2]) (= . ‘
CLIENT CLIENT CLIENT CLIENT reVI ews ° re Stog ra d e] co m
BACKEND
2]) (=
= - social.example.com ‘
BACKEND

Cookie: ... Authorization: Bearer ...

BACKEND

CLIENT CLIENT

CLIENT CLIENT CLIENT

E])(E]
CLIENT CLIENT

BACKEND BACKEND

BACKEND BACKEND BACKEND

Y @PhilippeDeRyck api.restograde.com

Cookies only work well with a single backend domain.

The Authorization header can be sent
to multiple domains.

, @PhilippeDeRyck

 Sey
’ @PhilippeDeRyck

SESSION
STORAGE

LOCAL
STORAGE

SESSION
STORAGE

17

 Sey
’ @PhilippeDeRyck

SESSION
STORAGE

LOCAL
STORAGE

SESSION
STORAGE

18

Your API-Centric Web App Is Probably Not Safe Against XSS and
CSRF

Most of the developments I've participated in recently follow the “single-
page application based on a public APl with authentication” architecture.

Using Angular.js or React.js, and based on a RESTful API, these
applications move most of the complexity to the client side.

HttpOnly cookies

HttpOnly is useful, but not as an XSS defense

THE DEAL WITH HTTPONLY

 The HtipOnly flag resolves a consequence of an XSS attack
 Stealing the session identifier becomes a lot harder

* But you still have an XSS vulnerability in your application
e XSS allows the attacker to execute arbitrary code
* That code can trigger authenticated requests, modify the DOM, ...

* HttpOnly is still recommended, because it raises the bar
e XSS attacks become a little bit harder to execute and to persist
e XSS attacks from subdomains become less powerful (with domain-based cookies)

* In Chrome, HtipOnly prevents cookies from entering the rendering process
e Useful to reduce the impact of CPU-based Spectre and Meltdown attacks

’ @PhilippeDeRyck

21

COMPARING CLIENT-SIDE STORAGE MECHANISMS

Survives a page
reload

Available to the
entire origin

Cannot be shielded
from malicious code

Can be abused in
case of XSS

y @PhilippeDeRyck

Survives a page
reload

Available to the
window and children

Can be a bit shielded
from malicious code

Can be abused in
case of XSS

Does not survive a
page reload

Available to running
code only

Can be shielded from
malicious code

Can be abused in
case of XSS

Survives a page
reload

Available on
outgoing requests

Can be shielded from
malicious code

Can be abused in
case of XSS

22

Contrary to custom storage areas, cookies can be fully
hidden from JavaScript, preventing theft through XSS.

XSS is the problem here, and HttpOnly will not save you

, @PhilippeDeRyck

Set-Cookie: name=value

Set-Cookie: name=value; Secure

Set-Cookie: name=value; Secure; HttpOnly

Set-Cookie: Secure—-name=value; Secure; HttpOnly

Set-Cookie: Host-name=value; Secure; HttpOnly

’ @PhilippeDeRyck 24

'request’': function (config) {

config.headers = config.headers || {};

1f ($localStorage.token) {

config.headers.Authorization = 'Bearer ' + $localStorage.token;

}

return config;

@Injectable()
export class TokenInterceptor implements HttpInterceptor {

constructor(public auth: AuthService) {}

intercept(request: HttpRequest<any>, next: HttpHandler): Observable<HttpEvent<any>> {

request = request.clone({
setHeaders: {
Authorization: ‘Bearer ${this.auth.getToken()}"’
}
};

return next.handle(request);

}
}

, @PhilippeDeRyck

import { JwtModule } from '@authO/angular-jwt’;
import { HttpClientModule } from '@angular/common/http’;

export function tokenGetter() {
return localStorage.getItem('access token');

@NgModule ({
bootstrap: [AppComponent],
imports: [

HttpClientModule,
JwtModule. forRoot ({
config: {
tokenGetter: tokenGetter,
whitelistedDomains: ['localhost:3001'],
blacklistedRoutes: ['localhost:3001/auth/']

}
})
]

})

export class AppModule {}
’ @PhilippeDeRy

Both mechanisms require effort to secure.

Cookies need flags and prefixes, and the Authorization
header needs to be controlled in code

, @PhilippeDeRyck

<script src="admin/allTheCode.js"></script>

v Request Headers

:authority: restograde.com

:method: GET

:path: /private.png

:scheme: https

accept: image/webp,image/apng, image/*,*/*;q=0.8
accept-encoding: gzip, deflate, br

accept-language: en-GB,en-US;q=0.9,en;q=0.8,n1;0=0.7,1a;q=0.6
cache-control: no-cache

cookie: ID=12345678

pragma: no-cache

referer: https://restograde.com/

xhr = new XMLHttpRequest();

xhr .open ("GET", "https://restograde.com") ;
xhr .withCredentials = true;
xhr.send () ;

v Request Headers
:authority: restograde.com
:method: GET
path: /
:scheme: https
accept: *x/x*
accept-encoding: gzip, deflate, br
accept-language: en-GB,en-US;g=0.9,en;q=0.8,n1;q0=0.7,1la;q=0.6
cache-control: no-cache
cookie: ID=12345678
pragma: no-cache

referer: https://restograde.com/

new WebSocket ("wss://restograde.com") ;

v Request Headers view source

Accept-Encoding: gzip, deflate, br

Accept-Language: en-GB,en-US;q=0.9,en;q9=0.8,n1;9=0.7, la;q=0.6
Cache-Control: no-cache

Connection: Upgrade

Cookie: ID=12345678

Host: restograde.com

Origin: https://restograde.com

Pragma: no-cache

Sec-WebSocket-Extensions: permessage-deflate; client_max_window_bits
Sec-WebSocket-Key: nYH7HTW300SDAveTiBpBGQ==
Sec-WebSocket-Version: 13

Upgrade: websocket

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_14_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Safari/53
7.36

Cookies are present on every browser-initiated request,
while the Authorization header is not.

If you depend on authorization for these features,
consider using cookies.

, @PhilippeDeRyck

Restograde
context

Maliciousfood
context

Legitimate

requests within
the application

Forged requests

’ @PhilippeDeRyck

BACKEND

32

@PhilippeDeRyck

CSRF PROTECTION IN AN APl WORLD

* If state-changing requests can only be sent from XHR, rely on CORS

* Force the use of a non-form content type, so the requests fall within CORS
* E.g., application/json
* For cross-origin requests, the browser always sends an Origin header

* If requests can be forged from HTML elements, use the double submit cookie
* The server needs to set the cookie, and check incoming requests for the secret value
* Angular supports this out of the box when frontend and backend run in the same domain

* API calls that can be forged from HTML should be avoided if possible

* Double submit cookies only work well within a single domain
* Plugins can forge requests across domains with arbitrary origin headers

, @PhilippeDeRyck 34

EXOTIC WAYS TO FAKE THE ORIGIN HEADER WITH ADOBE PDF

<template>
<subform name="_">
<pageSet/>
<field id="Hello World!">
<event activity="docReady" ref="$host" name="event click">
<submit

textEncoding="SIGR#RD: SN BB RIEESE s #xD ;
 "

xdpContent="pdf datasets xfdf"

target="http://Example.com/test" />

</event>

T Triggered HTTP request:

POST /test HTTP/1.1
Accept: text/html, application/xhtml+xml, */*
Content-Type: application/vnd.adobe.xdp+xml; charset=-

Accept-Language: de-DE

Host: EXample.com
[...

]

y @PhilippeDeRyck

Cookies are present on every browser-initiated request,
even when it originates from an attacker's page.

If you use cookies, implement CSRF protection.

, @PhilippeDeRyck

Authenticate & Authorize

]

BROWSER

SERVER

RESOURCE
SERVER

CLIENT

’ @PhilippeDeRyck 37

BROWSER

’ @PhilippeDeRyck

CLIENT

SERVER

RESOURCE
SERVER

38

BROWSER

CLIENT RESOURCE
SERVER

’ @PhilippeDeRyck

39

Cookies are inherent to the web and are the only reliable
way to propagate state.

For now, secure your cookies, and lookout for the future.

, @PhilippeDeRyck

1.2. No. Really. We have cookies today. Why do we need this new thing?

» ~6.8% of cookies are set with HttpOnly.

e ~5.5% are set with Secure.

e ~3.1% are set with HttpOnly; Secure.

e ~0.06% are set with SameSite=*; Secure.

* ~0.05% are set with SameSite=*.

e ~0.083% are set with HttpOnly; Secure; SameSite=*.
* ~0.006% are set with SameSite=*; HttpOnly.

* ~0.005% are set witha __Secure- prefix.

* ~0.01% are set witha __ Host- prefix.

Y @rhilippeDeRyck https://mikewest.github.io/http-state-tokens/draft-west-http-state-tokens.html 4

Network Working Group M. West
Internet-Draft Google
Intended status: Standards Track April 1, 2019
Expires: October 3, 2019

HTTP State Tokens

draft-west-http-state-tokens-latest

Abstract

This document describes a mechanism which allows HTTP servers to maintain stateful
sessions with HTTP user agents. It aims to address some of the security and privacy
considerations which have been identified in existing state management mechanisms,
providing developers with a well-lit path towards our current understanding of best

practice.

Y @rhilippeDeRyck [1] https://mikewest.github.io/http-state-tokens/draft-west-http-state-tokens.htmls:

They work well with a single domain, for all types of requests
They require flags and prefixes to lock 'em down

They work well, even in multi-domain scenarios
They require application code and are not always there

Client generates the value
Server offers additional security features (e.g., signing key)

y @PhilippeDeRyck

FREE SECURITY CHEAT SHEETS FOR MODERN APPLICATIONS

Pragmatic Web Security SECURITY CHEAT SHEET

@ Pragmatic Web Security SECURITY CHEAT SHEET
Version 201

The OWASP top 10 is one of the most influential security documents of all time. But how do these top 10 vulnerabi
in a frontend JavaScript application?
This cheat sheet offers practical advice on handling the most relevant OWASP top 10 vulnerabilities in Angular applications.

JSON Web Tokens (JWTs) have become extremely popular. JWTs seem deceivingly simple. However, to ensure their security
properties, they depend on complex and often misunderstood concepts. This cheat sheet focuses on the underlying concepts.
The cheat sheet covers essential knowledge for every developer producing or consuming JWTs.

DISCLAIMER This I5 an opionated e 2017). apphed ¥
‘. 3L injection), but are cut of scape K - Fence, they

1) USING DEPENDENCIES WITH KNOWN VULNERABILITIES
WASP 89
(7] Ptan for a periodical release schedule
23 Usenpm sudit to scan for known vulnerabilities
/7 Setup automated dependency checking to receive alerts
Sithab offers automatic dependency check "

7 Integrate dependency checking into your build pipeline

2 BROKEN AUTHENTICATION

alternatives exist, eac!

SERVER-SIDE SESSION STATE
() Use long and random session identifiers with high entropy

OWASP has a great cheat sheet of fering practical advice (1]

(7] Setup key management / key rotation for your signing keys
/7 Ensure you can handle session expiration and revocation

COOKIE-BASED SESSION STATE TRANSPORT
(1) Enable the proper cookie security properties

AUTHORIZATION HEADER-BASED SESSION STATE TRANSPORT
(| omy send the authorization header to whitelisted hosts

[1) hetps frwwm.c

mend Angular apphoasicns. Many backend related Issues apply 1o e APYside of an Angular
ttied

3 CROSS-SITE SCRIPTING

ASP &7
PREVENTING HTML/SCRIPT INJECTION IN ANGULAR
([Use interpolation with {{} } to automatically apply escaping
() Use binding to linnerHTML] to safely insert HTML data

SecurityTrust* () On untrusted data
ot apply protection

PREVENTING CODE INJECTION OUTSIDE OF ANGULAR
[} Avmd direct DOM manipulation

() Dormwmhvl-mmwwmdynlmlc pages
() Use Ahead-Of-Time compilation (AOT)

BROKEN ACCESS CONTROL

OWASP
AUTHORIZATION CHECKS
() implement proper authorization checks on API endpoints

Check if the is et
Check if the user is al access the specifi

(7} Do not rely on client-side authorization checks for m:umy

CROSS-ORIGIN RESOURCE SHARING (CORS)

(C] Prevent unauthorized cross-origin access with a strict policy
(7} Avoid whitelisting the nuil origin in your policy

(] Avoid blindly reflecting back the value of the origin header
() Avoid custom CORS mplememmons

Origin-matchi

SENSITIVE DATA EXPOSURE

DATA IN TRANSIT

() Serve everything over HTTPS
(") Ensure that all traffic is sent to the HTTPS endpoint
TTP to HTTPS o & ealing with page loads
sable HTTP an endy

() Enable Strict Transport Security on all HTTPS endpoints
DATA AT REST IN THE BROWSER

() Encrypt sensitive data before persisting it in the browser
() Encrypt sensitive data in JWTs using JSON Web Encryption

INTRODUCTION

A JWT is a convenient way to represent claims securely. A
claim is nothing more than a key/value pair. One common
use case is a set of claims representing the user's identity.
The claims are the payload of a JWT. Two other parts are
the header and the signature.

JWTs should always use the appropriate signature scheme
/7 |fa JNT contains sensitive data, it should be encrypted
JWTs require proper cryptographic key management
7 Using JWTs for sessions introduces certain risks

JWT INTEGRITY VERIFICATION

Claims in a JWT are often used for security-sensitive op-
erations. Preventing tampering with previously generated
claims is essential. The issuer of a JWT signs the token,
allowing the receiver to verify its integrity. These signatures
are crucial for security.

Symmetric signatures use an HMAC function. They are easy to
setup, but rely on the same secret for generating and verifying
signatures. Symmetric signatures only work well within
application.

Asymmetric signatures rely on a public/private key pair. The
private key is used for signing, and is kept secret. The public key
used for verification, and can be widely known. Asymmetric

signatures are ideal for distributed scenarios

[] Always verify the signature of JWT tokens
[J Avoid Haruy functions that do not verify signatures
The .
(m} mckmme lecmolsymmem: signatures is not shared
(7] Adistributed setup should only use asymmetric signatures

JWT Encryp camplex tapic. | v sheet

VaupaTting JWTs

Apart from the signature, a JWT contains other security
properties. These properties help enforce a lifetime on a
JWT. They also identify the issuer and the intended target
audience. The receiver of a JWT should always check these
properties before using any of the claims.

(7] Check the exp claim to ensure the JWT is not expired

(7] Check the nbf claim to ensure the JWT can already be used
(C) Check the i== claim against your list of trusted issuers

() Check the aud claim to see if the JWT is meant for you

CRYPTOGRAPHIC KEY MANAGEMENT

The use of keys for signatures and encryption requires
careful management. Keys should be stored in a secure lo-
cation. Keys also need to be rotated frequently. As a result,
multiple keys can be in use simultanecusly. The application
has to foresee a way to manage the JWT key material.

O vaekeymnlenll in a dedicated key vault service
be fe ynamically, instead

[} Uuﬂ-mchlmmm-hudumldumfy-lpu:lﬁcby

(7] Validate an embedded public key against a whitelist

il cause an aftack

() Validate a key URL against a whitelist of URLS / domains

Failure to whitellst will cause an attack T to be sccepted

UsING JWTS FOR AUTHORIZATION STATE

Many modern applications use JWTs to push authoriza-
tion state to the client. Such an architecture benefits from
a stateless backend, often at the cost of security. These
JWTs are typically bearer tokens, which can be used or
abused by whoever obtains them.

/7 Ris hard to revoke & self-contained JWT before it expires
(C) JWTs with authorization data should have a short lifetime
(] Combine shortived JWTs with a long-lived session

Reach out to learn more about our in-depth training program for developers

Pragmatic Web Security

/in/PhilippeDeRyck @PhilippeDeRyck

philippe@pragmaticwebsecurity.com

