
https://PragmaticWeb Security.com

DR. PHILIPPE DE RYCK

TAKING SECURITY SERIOUSLY

@PhilippeDeRyck 2

@PhilippeDeRyck 3

WHAT DOES IT MEAN TO
TAKE SECURITY SERIOUSLY?

@PhilippeDeRyck

I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

Auth0 Ambassador

SecAppDev organizer

https://pragmaticwebsecurity.com

I help developers with security

Hands-on in-depth security training

Advanced online security courses

Security advisory services

@PhilippeDeRyck

Giving the browser a snippet of code mixed with data

1
2

let data = "<p>" + review + "</p>"
document.getElementById("msg").innerHTML = data

innerHTML relies on the browser's
code parser to handle the data

https://restograde.com

A review submitted by a malicious user

1
2
3

This restaurant is highly recommended. The food
is exquisite and the service is impeccable.

@PhilippeDeRyck

Giving the browser a snippet of code mixed with data

1
2

let data = "<p>" + review + "</p>"
document.getElementById("msg").innerHTML = data

innerHTML relies on the browser's
code parser to handle the data

Giving the browser code and data with context information

1
2
3

let p = document.createElement("p")
p.textContent = review
document.getElementById("msg").appendChild(p)

Using the proper DOM APIs provides
the browser with context, avoiding

the confusion that leads to XSS

A review submitted by a malicious user

1
2
3

This restaurant is highly recommended. The food
is exquisite and the service is impeccable.

https://restograde.com

@PhilippeDeRyck

Appending a div with jQuery's append function

1 $("#reviews").append(`<p class="review">${review}</div>`);

@PhilippeDeRyck

UNDERSTAND YOUR LIBRARIES

Libraries and frameworks are not always secure out
of the box. Understanding how your library of choice

handles security is crucial.

@PhilippeDeRyck

@PhilippeDeRyck

{{myDirtyData}}

@PhilippeDeRyck

A review submitted by a malicious user

1
2
3
4
5

This restaurant is highly recommended. The
food is exquisite and the service is impeccable. Check out my story
here!<img src="none.png" onerror="alert('Go
there, now!')">

An Angular template template to combine data with HTML

1
2
3
4

<div>
<h3>{{ review.title }}</h3>
<p>{{ review.content }}</p>

</div>

https://restograde.com

By default, Angular escapes
values embedded in a template

before rendering them

@PhilippeDeRyck

A review submitted by a malicious user

1
2
3
4
5

This restaurant is highly recommended. The
food is exquisite and the service is impeccable. Check out my story
here!<img src="none.png" onerror="alert('Go
there, now!')">

An Angular template to render user-provided HTML

1
2
3
4

<div>
<h3>{{ review.title }}</h3>
<p [innerHTML]="review.content"></p>

</div>

[innerHTML] does not directly
expose innerHTML property,

but sanitizes the data first

Binding HTML into the page
with Angular is secure by

default

https://restograde.com

@PhilippeDeRyck

trustAsHtml(myDirtyData)

@PhilippeDeRyck

trustAsHtml(myDirtyData)

bypassSecurityTrustHtml(myDirtyData)

@PhilippeDeRyck

MAKE INSECURITY EXPLICIT

Explicitly marking features as insecure
helps prevent accidental misuse

and simplifies code scanning efforts

@PhilippeDeRyck

Data containing HTML with style attributes

1 <p style="color: red">…</p>
The Angular sanitizer is secure-
by-default and does not allow

the use of style attributes

The only way to allow style attributes is to bypass sanitization

1 <div [innerHTML]="sanitizer.bypassSecurityTrustHtml(data)"></div>

This code completely disables the
sanitizer, creating a massive

vulnerability in the application

@PhilippeDeRyck

The application code no longer calls bypassSecurityTrustHtml directly

1 <div [innerHTML]="data | sanitizeWithStyle"></div>

An Angular pipe that sanitizes HTML but allows style information in attributes

1
2
3
4
5
6
7
8
9
10
11
12
13

@Pipe({
name: 'sanitizeWithStyle'

})
export class SanitizeWithStylePipe implements PipeTransform {

constructor(private sanitizer : DomSanitizer) {}

transform(html: string) : SafeHtml {
// Allowing CSS is still not recommended
return this.sanitizer.bypassSecurityTrustHtml(

DOMPurify.sanitize(html, {ADD_ATTR: ['style']}));
}

}

Allowing style information can still result in
attacks, so use a pattern like this with care

This use of
bypassSecurityTrustHtml can

be marked as checked, so code
scanning tools ignore it

DOMPurify sanitizes the data, but is
configured to allow style attributes

@PhilippeDeRyck

SETUP DEVELOPERS FOR SECURITY SUCCESS

Secure-by-default frameworks reduce the need for knowledge

Subtle security nudges reduce the risk of mistakes

Encapsulate dangerous functions and use linting to prevent direct usage

@PhilippeDeRyck

A typical DOM-based XSS vulnerability, which also occurs in many script gadgets

1 document.querySelector("#data").innerHTML = "Hello world!" + data;

Providing data and code to the browser's
HTML parser triggers DOM-based XSS

A page enabling a Trusted Types policy in a response header

1
2
3

Content-Security-Policy: require-trusted-types-for 'script'

document.querySelector("#data").innerHTML = "Hello world!" + data;

When Trusted Types is enabled, text-to-code
sinks like innerHTML throw a TypeError

Enabling Trusted Types eliminates an entire
class of XSS vulnerabilities

@PhilippeDeRyck

Trusted Types does not affect the use of proper DOM APIs

1
2
3
4
5
6

Content-Security-Policy: require-trusted-types-for 'script'

let msg = document.createElement("span");
msg.setAttribute("class", "italic");
msg.innerText = e.data;
document.getElementById("msg").appendChild(msg);

DOMPurify has built-in support for Trusted
Types, and can be instructed to return the data

as a TrustedHTML value instead of a string

InnerHTML can still be used, as long as it is assigned a Trusted Type value

1
2
3
4

Content-Security-Policy: require-trusted-types-for 'script'

let safeData = DOMPurify.sanitize("Hello world!" + data, {RETURN_TRUSTED_TYPE: true});
document.querySelector("#data").innerHTML = safeData;

The safe value can now be assigned to
innerHTML, because it is properly

sanitized by DOMPurify

Enable trusted types by setting a CSP policy

1 Content-Security-Policy: trusted-types angular; require-trusted-types-for 'script'

Tells the browser to only allow
trusted types in the DOM

The browser now refuses to assign unsafe content to innerHTML

1 this.div.nativeElement.innerHTML = this.inputValue;

Enable Angular's built-in
Trusted Types policy

Angular works as before, but
the browser no longer allows

insecure behavior (e.g.,
bypassSecurityTrustHtml,

native innerHTML)

Enable trusted types by setting a CSP policy

1
2

Content-Security-Policy:
trusted-types angular angular#unsafe-bypass; require-trusted-types-for 'script'

The browser still refuses to assign unsafe content to innerHTML

1 this.div.nativeElement.innerHTML = this.inputValue;

Enable Angular's built-
in Trusted Types policy

Allow the use of
bypassSecurityTrustHtml,

secure or not

@PhilippeDeRyck

USE PLATFORM-LEVEL SECURITY FEATURES

Building applications on a secure platform offers a significant advantage

Trusted Types prevents dangerous DOM manipulations that lead to XSS

A secure platform not only covers the application, but also its dependencies

@PhilippeDeRyck

@PhilippeDeRyck

> 97%
of code in a modern web app are dependencies

@PhilippeDeRyck 27

$ ng new clean-app

? Would you like to add Angular routing? Yes
? Which stylesheet format would you like to use? Sass

added 1169 packages from 1030 contributors and audited
42445 packages in 28.75s

@PhilippeDeRyck 28

$ cloc node_modules/

Language files blank comment code

JavaScript 12683 145344 525680 1773037
JSON 1555 104 0 161571
Markdown 1385 65564 4 157446
TypeScript 2892 9625 90588 104376
HTML 274 1656 218 33724
CSS 148 299 2301 22382
C++ 75 3784 3501 22332
Python 51 4205 7606 18695
C/C++ Header 101 2758 1858 15114
LESS 482 1611 410 11321
XML 20 3237 1300 7617
YAML 163 140 112 2416
Bourne Shell 18 292 333 1500
SVG 8 2 2 776
make 30 236 39 715
Windows Module Definition 7 115 0 641
DTD 1 179 177 514
...

SUM: 19983 239598 634354 2336228

@PhilippeDeRyck 29

$ ng new clean-app

? Would you like to add Angular routing? Yes
? Which stylesheet format would you like to use? Sass

added 1169 packages from 1030 contributors and audited
42445 packages in 28.75s

1030 contributors

@PhilippeDeRyck

@PhilippeDeRyck

40%
of packages rely on known vulnerable code*

Small world with high risks: a study of security threats in the npm ecosystem

*estimated by the authors of

@PhilippeDeRyck

@PhilippeDeRyck

@PhilippeDeRyck

a patched version of Struts2 fixes a remote code execution vulnerability
March 7th, 2017

attackers start probing Equifax systems using the Struts vulnerability
March 10th, 2017

Equifax discovers the breach of their systems
July 29th, 2017

Equifax uses Apache Struts 2 to build applications

attackers escalate the attack to full-scale data exfiltration
May 2017

Equifax announces the breach
September 7th, 2017

@PhilippeDeRyck

78%
of vulnerabilities occur in indirect dependencies

@PhilippeDeRyck

@PhilippeDeRyck

@PhilippeDeRyck

SECURE YOUR DEPENDENCY GRAPH

Setup dependency monitoring for all your projects

Patch your software, both continuously and urgently

Focus on the dependencies that matter

@PhilippeDeRyck 40

EMPOWER PEOPLE TO
TAKE SECURITY SERIOUSLY

@PhilippeDeRyck

IN-DEPTH ONLINE COURSES TO HELP YOU
TAKE SECURITY SERIOUSLY

https://courses.pragmaticwebsecurity.com

@PhilippeDeRyck

THANK YOU!

Follow me on Twitter to stay up to date
on security resources and courses

Images from Unsplash.com

