
DR. PHILIPPE DE RYCK

https://Pragmatic Web Security.com

SUPERCHARGING OAUTH 2.0 SECURITY

HIGH-LEVEL OVERVIEW OF THE AUTHORIZATION CODE FLOW

1 Frontchannel interactions to obtain an
authorization code

2 Backchannel interaction to exchange
the authorization code for tokens

3 API access with the
access token

1 I want you to access an API on my behalf

2 Initialize the flow with the STS by
redirecting the browser

3 Request to the STS to initialize the flow

4 Who are you? Please authenticate to me!

5 I am Philippe with password FluffyDog17!

6 Good. Now follow this redirect to send the
authorization code to the application

7 Follow redirect to the callback endpoint

8A server-to-server request to exchange
the authorization code from step 7

9 The access token representing
the authority to access the API

10 Access API with
access token

THE AUTHORIZATION CODE FLOW
PKCE omitted for
brevity reasons

The authorization request (a redirect to the STS)

1
2
3
4
5
6
7

https://sts.restograde.com/authorize
 ?response_type=code
 &scope=reviews
 &client_id=AB983CEYgx4mdUg3NKNKHjwfNAL5Fb42
 &redirect_uri=https://virtualfoodie.com/callback
 &code_challenge=29K8tipblinCeP … HZ1PqLVxd9s
 &code_challenge_method=S256

Indicates the authorization code flow
We want a token with reviews access

Where the STS should send the code

2 3

The client requesting the token

Flow security feature (PKCE)

TERMINOLOGY

Security Token Service (STS) Authorization Server OpenID Provider

API Resource Server

User Resource Owner End-User

Client Client Relying Party

This session OAuth 2.0 OpenID Connect

I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

SecAppDev organizer

https://pdr.online

I help developers with security

Hands-on in-depth security training

Advanced online security courses

Expert security advisory services

pdr.online

/in/PhilippeDeRyck

GRAB A COPY OF THE SLIDES ...

Website icons created by Uniconlabs - Flaticon

https://infosec.exchange/@PhilippeDeRyck

https://pragmaticwebsecurity.com/talks

REDUCING THE POWER OF ACCESS TOKENS

1 Request with
access token

2 Response

1 Request with
access token

2 Response

An access token to access three separate Restograde APIs

1
2
3
4
5
6
7
8

{
 "iss": "https://sts.restograde.com",
 "aud": ["https://api.restograde.com/reviews",
 "https://api.restograde.com/restaurants",
 "https://api.restograde.com/users"],
 "sub": "2262430d-c9cb-484f-9770-805893ff9518",
 "scope": "restaurants:read reviews:write"
}

Including a full list of audiences
leaks information about valid

APIs to any receiver of this token

1 Request with
access token

2 Response

An access token to access three separate Restograde APIs

1
2
3
4
5
6
7
8

{
 "iss": "https://sts.restograde.com",
 "aud": ["https://api.restograde.com/reviews",
 "https://api.restograde.com/restaurants",
 "https://api.restograde.com/users"],
 "sub": "2262430d-c9cb-484f-9770-805893ff9518",
 "scope": "restaurants:read reviews:write"
}

Scopes for specific APIs are also
leaked to every receiver of the

access token

1 Request with
access token

2 Response

An access token to access three separate Restograde APIs

1
2
3
4
5
6
7
8

{
 "iss": "https://sts.restograde.com",
 "aud": ["https://api.restograde.com/reviews",
 "https://api.restograde.com/restaurants",
 "https://api.restograde.com/users"],
 "sub": "2262430d-c9cb-484f-9770-805893ff9518",
 "scope": "restaurants:read reviews:write"
}

Encrypting the token is difficult
when there are multiple receivers

(decryption happens with a private
key that should not be shared)

https://datatracker.ietf.org/doc/html/rfc8707

The authorization request (a redirect to the STS)

1
2
3
4
5
6
7
8

https://sts.restograde.com/authorize
 ?response_type=code
 &client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
 &scope=read:restaurants write:reviews
 &resource=https://api.restograde.com/reviews
 &resource=https://api.restograde.com/restaurants
 &redirect_uri=https://app.restograde.com/callback
 & [… state / code_challenge / code_challenge_method …]

The identifiers of the requested
resource servers (APIs)

2 3

Requesting access tokens with a specific resource

1
2
3
4
5
6
7
8

POST /oauth/token
Host: sts.restograde.com

 grant_type=authorization_code
&client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
&code=SplxlOBeZQQYbYS6WxSbIA
&resource=https://api.restograde.com/reviews
& [… redirect_uri / code_verifier …]

Requesting an access token for a
specific resource server (API)

8

The access token issued by the STS

1
2
3
4
5
6

{
 "iss": "https://sts.restograde.com",
 "aud": "https://api.restograde.com/reviews",
 "sub": "2262430d-c9cb-484f-9770-805893ff9518",
 "scope": "reviews:write"
}

A specific target audience

9

The STS does "downscoping" by only
including relevant scopes for the audience

! The client can obtain additional access
tokens by running a refresh token flow
with the resource parameter

pdr.online

USING RESOURCE INDICATORS

The Resource Indicators spec helps to reduce the
authority of an access token to a single audience.

Resource Indicators are especially useful in large and
complex architectures.

SECURING THE AUTHORIZATION REQUEST

The authorization request (a redirect to the STS)

1
2
3
4
5
6
7

https://sts.restograde.com/authorize
 ?response_type=code
 &scope=reviews
 &client_id=AB983CEYgx4mdUg3NKNKHjwfNAL5Fb42
 &redirect_uri=https://virtualfoodie.com/callback
 &code_challenge=29K8tipblinCeP … HZ1PqLVxd9s
 &code_challenge_method=S256

Indicates the authorization code flow
We want a token with reviews access

Where the STS should send the code

2 3

The client requesting the token

Flow security feature (PKCE)

This URL cannot ensure the integrity of
the parameters, nor does it authenticate

the client that initiated the flow

https://securityblog.omegapoint.se/en/writeup-keycloak-cve-2023-6927/

https://datatracker.ietf.org/doc/html/rfc9101

1 Request that triggers the initialization of the flow

5 Initialize the flow using a signed JWT with parameters

6 JWT-based request to the STS to initialize the flow

7 Who are you? Please authenticate to me!

8 I am Philippe with password FluffyDog17!

10 Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

11 Follow redirect to the application's callback endpoint

12Exchange the authorization code from step 11
and include the code verifier

14 Relevant tokens for this
particular use case

15 Handle tokens according
to the use case at hand

THE AUTHORIZATION CODE FLOW WITH JAR

3Generate a random value (code verifier) and
associate it with the user's session (e.g., keep in a cookie)

9
Store the code challenge
along with the
authorization code

4
Calculate the SHA256 hash
of the code verifier
(code challenge)

13

Calculate the SHA256
hash of the code verifier
and compare to the
stored code challenge

The configuration of the flow is
provided as a signed JWT object,
adding integrity and authenticity

to the data

2Generate JWT with flow parameters

The redirect URI

1
2
3
4
5
6
7
8

https://sts.restograde.com/authorize
 ?client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
 &request=eyJhbGciOiJQUzI1NiIsInR5cCI6Im9hdXRoLWF1dGh6LX
 JlcStqd3QifQ.eyJpc3MiOiJsWTVnMEJLQjdNb3c0eURsYjZyZEdQc0
 8yaTFnN09zdiIsImF1ZCI6Imh0dHBzOi8vc3RzLnJlc3RvZ3JhZGUuY
 …
 a8JSiQtbP4IKzGXvHoJvPh-T4OxgA9QZj9erIT2wEVBcieAO0340zl2
 Y5Z953bgpSb4O4NbFKXa_lD4GTJ2LGF48IGjRQ

Indicates the client making the request

The configuration of the flow

5 6

The JWT is signed by the private
key of the client and contains all

the traditional flow
configuration parameters

The encoded JWT request

eyJhbGciOiJQUzI1NiIsInR5cCI6Im9hdXRoLWF
1dGh6LXJlcStqd3QiLCJraWQiOiJoaGJHeGxibW
RsSWpvaVNtaEZUIn0.eyJpc3MiOiJsWTVnMEJLQ
jdNb3c0eURsYjZyZEdQc08yaTFnN09zdiIsImF1
ZCI6Imh0dHBzOi8vc3RzLnJlc3RvZ3JhZGUuY29
tIiwicmVzcG9uc2VfdHlwZSI6ImNvZGUiLCJjbG
llbnRfaWQiOiJsWTVnMEJLQjdNb3c0eURsYjZyZ
EdQc08yaTFnN09zdiIsInJlZGlyZWN0X3VyaSI6
Imh0dHBzOi8vYXBwLnJlc3RvZ3JhZGUuY29tL2N
hbGxiYWNrIiwic2NvcGUiOiJyZWFkIiwic3RhdG
UiOiJzMHd6b2ptMnc4YzIzeHpwcmtrNiIsImNvZ
GVfY2hhbGxlbmdlIjoiSmhFTjBBbW5qN0LigKZX
aDVQeFdpdFpZSzF3b1doNVB4V2l0WlkiLCJjb2R
lX2NoYWxsZW5nZV9tZXRob2QiOiJTMjU2In0.LJ
pskbj0rYhwxt4Bwiiw1Ku-
nmhGuOFUvqBrv7xLFu6Tkkes6p9c7xvyulp017Q
ptCZlN5i7wQyXp5VY32fZ0dF9akGEhQymPSvyBe
wzZgDrEOM8ZD_-
LbQhlg2OwE3ekq4mwIsYVZVRA4RQJMmN9JuoQHU
cuBRDke_bdR1K6XosHQuy-
wEz7j8yix8vcqGgSe6MvPN3nZjShMAcTd9QJpZX
qin5NqXlByFj9iRecBygOK6snJwz7S2s79R6987
1Tz8Ap_vCcVtJRLinBCzyjS0JHEBMvrvuOxzxCH
4comCM96fyi47D5yRZFsUJmfIDJr1D4yOIVbQIu
2GKA_bULw

The payload of the decoded JWT object

1
2
3
4
5
6
7
8
9
10
11

{
 "iss": "lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv",
 "aud": "https://sts.restograde.com",
 "response_type": "code",
 "client_id": "lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv",
 "redirect_uri": "https://app.restograde.com/callback",
 "scope": "read",
 "state": "s0wzojm2w8c23xzprkk6",
 "code_challenge": "JhEN0Amnj … xWitZYK1woWh5PxWitZY",
 "code_challenge_method": "S256"
}

The header of the decoded JWT object

1
2
3
4
5

{
 "alg": "PS256",
 "typ": "oauth-authz-req+jwt",
 "kid": "hhbGxlbmdlIjoiSmhFT"
}

The payload of the decoded JWT object

1
2
3
4
5
6
7
8
9
10
11

{
 "iss": "lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv",
 "aud": "https://sts.restograde.com",
 "response_type": "code",
 "client_id": "lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv",
 "redirect_uri": "https://app.restograde.com/callback",
 "scope": "read",
 "state": "s0wzojm2w8c23xzprkk6",
 "code_challenge": "JhEN0Amnj … xWitZYK1woWh5PxWitZY",
 "code_challenge_method": "S256"
}

The header of the decoded JWT object

1
2
3
4
5

{
 "alg": "PS256",
 "typ": "oauth-authz-req+jwt",
 "kid": "hhbGxlbmdlIjoiSmhFT"
}

The issuer of the JWT is the client,
and the audience is the STS

The client ID must match the
client ID provided in the URL

The JWT request contains the
parameters that used to be

present in the URL

The header defines the JWT type

The key identifier helps the STS to
select the right key from the client

JAR in action

pdr.online

USING JAR

JWT-Secured Authorization Requests enable integrity protection
for the parameters in the authorization request.

JAR eliminates increasingly common attacks against the
authorization request being sent over the insecure frontchannel.

https://datatracker.ietf.org/doc/html/rfc9126

1 Request that triggers the initialization of the flow

5 Initialize the flow with the PAR ID

6 Request to the STS with the PAR ID

7 Who are you? Please authenticate to me!

8 I am Philippe with password FluffyDog17!

9 Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

10 Follow redirect to the application's callback endpoint

11Exchange the authorization code from step 10
and include the code verifier

12 Relevant tokens for this
particular use case

13 Handle tokens according
to the use case at hand

THE AUTHORIZATION CODE FLOW WITH PAR

2
Submit the flow configuration using

a Pushed Authorization Request

3 Validate the PAR request
and generate a unique ID

4 Respond with the unique ID

PKCE omitted for
brevity reasons

The request to push the data of the authorization request

1
2
3
4
5
6
7
8
9

POST /oauth/par

 response_type=code
&scope=openid profile email
&client_id=FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42
&redirect_uri=https://restograde.com/callback
&code_challenge=29K8tipblinCeP … HZ1PqLVxd9s
&code_challenge_method=S256
&client_secret=6ODRv0g…OVOSWI

2

The STS supports a new PAR endpoint

The client authenticates when using PAR

The configuration of the flow

The STS can now validate the
flow parameters before the

actual flow has even started.

The response to the PAR request

1
2
3
4
5

{
 "request_uri": "urn:ietf:params:oauth:request_uri:
 6esc_11ACC5bwc014ltc14eY22c",
 "expires_in": 60
}

4

The ID for this PAR configuration

The lifetime of this PAR config

The redirect URI with the PAR ID

1
2
3
4

https://sts.restograde.com/authorize
 ?client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
 &request_uri=urn:ietf:params:oauth:request_uri:6e11ACC5
 bwc014ltc14eY22c

Indicates the client making the request

The ID provided by the STS in step 4

5 6

The PAR identifier is formatted
as a URI and refers to a

configuration that was pushed
to the STS by the client before

initializing the flow

PAR in action

! When using PAR, make sure clients are no
longer allowed to use a regular
Authorization Code flow

pdr.online

USING PAR

Pushed Authorization Requests eliminate the need to send flow
configuration parameters over the frontchannel and is quickly becoming

a recommended best practice.

If desired, the PAR request can contain a JWT-secured Authorization
Request, even though the combination of PAR and JAR is mostly overkill.

SENDER-CONSTRAINED TOKENS

1 I want you to access an API on my behalf

2 Initialize the flow with the STS by
redirecting the browser

3 Request to the STS to initialize the flow

4 Who are you? Please authenticate to me!

5 I am Philippe with password FluffyDog17!

6 Good. Now follow this redirect to send the
authorization code to the application

7 Follow redirect to the callback endpoint

8A server-to-server request to exchange
the authorization code from step 7

9 The access token representing
the authority to access the API

10 Access API with
access token

PKCE omitted for
brevity reasons

Access tokens are often bearer
tokens, allowing anyone that
possesses them to use them.

! Proof-of-possession mechanisms transform
bearer tokens into sender-constrained tokens

https://datatracker.ietf.org/doc/html/rfc8705

PROOF-OF-POSSESSION THROUGH TLS CERTIFICATES

Public key Private key

2 Generate tokens and bind
them to the certificate

1 Setup an mTLS connection and
exchange an authorization code

3 Respond with tokens

4Setup an mTLS connection
and make an API call

with the access token

6 Response

5 Verify that the TLS certificate matches
the certificate in the access token

Certificate

SENDER-CONSTRAINED TOKENS WITH MTLS

A JWT access token with an embedded certificate fingerprint

1
2
3
4
5
6
7
8
9
10
11
12

{
 "sub": "b6rdGPsO2iBKB7sO2i",
 "aud": "https://api.example.com",
 "azp": "lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv",
 "iss": "https://sts.restograde.com/",
 "exp": 1419356238,
 "iat": 1419350238,
 "scope": "read write",
 "cnf": {
 "x5t#S256": "bwcK0esc3ACC3DB2Y5_lESsXE8o9ltc05O89jdN-dg2"
 }
}

The fingerprint of the cert

mTLS is not always practical to use, especially in restricted
application environments or complex infrastructures

DPoP offers an application-level alternative to enable
sender-constrained tokens

https://datatracker.ietf.org/doc/html/rfc9449

THE CONCEPT OF DPOP
1Generate a

public/private key pair

Public key Private key

5 Generate tokens and bind
them to the public key

2Generate a DPoP proof
with the private key

3 Exchange an authorization code
along with the proof and public key

6 Respond with tokens

4 Verify that the client
possesses the private key

8Send request along with
access token and DPoP proof

10 Response

9 Verify the DPoP proof and its
binding to the access token

7Generate a DPoP proof
with the private key

DPoP ensures that only the client
holding the private key can use the

access token on API calls

THE CONCEPT OF DPOP
1Generate a

public/private key pair

Public key Private key

5 Generate tokens and bind
them to the public key

2Generate a DPoP proof
with the private key

3 Exchange an authorization code
along with the proof and public key

6 Respond with tokens

4 Verify that the client
possesses the private key

8Send request along with
access token and DPoP proof

10 Response

9 Verify the DPoP proof and its
binding to the access token

7Generate a DPoP proof
with the private key

The header and payload of the DPoP proof JWT

1
2
3
4
5
6
7
8
9
10
11
12
13
14

// Header
{
 "typ": "dpop+jwt",
 "alg": "ES256",
 "jwk": { ... public key ... }
}

//Payload
{
 "jti": "-BwC3ESc6acc2lTc",
 "htm": "POST",
 "htu": "https://sts.restograde.com/token",
 "iat": 1562262616
}

The token type indicates a JWT DPoP proof

2

The client's public key is part of the header

A unique identifier generated by the client

This DPoP proof is for a token request to the STS

The JWT is signed by the client's private key

THE CONCEPT OF DPOP
1Generate a

public/private key pair

Public key Private key

5 Generate tokens and bind
them to the public key

2Generate a DPoP proof
with the private key

6 Respond with tokens

4 Verify that the client
possesses the private key

8Send request along with
access token and DPoP proof

10 Response

9 Verify the DPoP proof and its
binding to the access token

7Generate a DPoP proof
with the private key

3 Exchange an authorization code
along with the proof and public key

The token request with the authorization code and DPoP proof

1
2
3
4
5
6
7
8
9

POST /token
Host: sts.restograde.com
DPoP: eyJ0eXAiOiJkcG9 … fbV37xRZT3Lg

 grant_type=authorization_code
&client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
&redirect_uri=https://app.restograde.com/callback
&code=SplxlOBeZQQYbYS6WxSbIA
&code_verifier=lT5q6nbPQRtdj…~IUdkErVDFG.fF4z7CzCxo

3

The DPoP proof generated in step 2

A traditional request to the token endpoint

THE CONCEPT OF DPOP
1Generate a

public/private key pair

Public key Private key

5 Generate tokens and bind
them to the public key

2Generate a DPoP proof
with the private key

3 Exchange an authorization code
along with the proof and public key

6 Respond with tokens

8Send request along with
access token and DPoP proof

10 Response

9 Verify the DPoP proof and its
binding to the access token

7Generate a DPoP proof
with the private key

4 Verify that the client
possesses the private key

The STS verifies the
signature of the DPoP
proof JWT using the

embedded public key

THE CONCEPT OF DPOP
1Generate a

public/private key pair

Public key Private key

2Generate a DPoP proof
with the private key

3 Exchange an authorization code
along with the proof and public key

6 Respond with tokens

4 Verify that the client
possesses the private key

8Send request along with
access token and DPoP proof

10 Response

9 Verify the DPoP proof and its
binding to the access token

7Generate a DPoP proof
with the private key

5 Generate tokens and bind
them to the public key

The generated access token bound to the client's public key

1
2
3
4
5
6
7
8
9
10

{
 "iss": "https://sts.restograde.com",
 "aud": "https://api.restograde.com",
 "client_id": "lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv",
 "sub": "2262430d-c9cb-484f-9770-805893ff9518",
 …
 "cnf": {
 "jkt": "bwcK0esc3ACC3DB2Y … 8o9ltc05O89jdN-dg2"
 }
}

5

The fingerprint of the client's public key

A traditional self-contained access token

THE CONCEPT OF DPOP
1Generate a

public/private key pair

Public key Private key

5 Generate tokens and bind
them to the public key

2Generate a DPoP proof
with the private key

3 Exchange an authorization code
along with the proof and public key

4 Verify that the client
possesses the private key

8Send request along with
access token and DPoP proof

10 Response

9 Verify the DPoP proof and its
binding to the access token

7Generate a DPoP proof
with the private key

6 Respond with tokens

A traditional token response
with an access token / refresh

token / identity token

THE CONCEPT OF DPOP
1Generate a

public/private key pair

Public key Private key

5 Generate tokens and bind
them to the public key

2Generate a DPoP proof
with the private key

3 Exchange an authorization code
along with the proof and public key

6 Respond with tokens

4 Verify that the client
possesses the private key

8Send request along with
access token and DPoP proof

10 Response

9 Verify the DPoP proof and its
binding to the access token

7Generate a DPoP proof
with the private key

The header and payload of the DPoP proof JWT

1
2
3
4
5
6
7
8
9
10
11
12
13
14

// Header
{
 "typ": "dpop+jwt",
 "alg": "ES256",
 "jwk": { ... public key ... }
}

//Payload
{
 "jti": "e1j3V_bKic8-LAEB",
 "htm": "GET",
 "htu": "https://api.restograde.com/reviews",
 "iat": 1562262618
 "ath": "fUHyO2r2Z3DZ…53EsNrWBb0xWXoaN",
}

The token type indicates a JWT DPoP proof

7

The client's public key is part of the header

A unique identifier generated by the client

This DPoP proof is for a GET request to an API endpoint

The JWT is signed by the client's private key

The hash of the access token associated with this proof

8Send request along with
access token and DPoP proof

THE CONCEPT OF DPOP
1Generate a

public/private key pair

Public key Private key

5 Generate tokens and bind
them to the public key

2Generate a DPoP proof
with the private key

3 Exchange an authorization code
along with the proof and public key

6 Respond with tokens

4 Verify that the client
possesses the private key

10 Response

9 Verify the DPoP proof and its
binding to the access token

7Generate a DPoP proof
with the private key

The request to the API with the access token and DPoP proof JWT

1
2
3
4

GET /reviews
Host: api.restograde.com
Authorization: DPoP eyJ0f37x3LgRZTbV … eRAiOiJkcG9
DPoP: eyJ0eXAiOiJkcG9 … fbV37xRZT3Lg

8

The access token issued by the STS
The DPoP proof JWT generated in step 7

The Authorization header no
longer carries a bearer token,

but a DPoP token

THE CONCEPT OF DPOP
1Generate a

public/private key pair

Public key Private key

5 Generate tokens and bind
them to the public key

2Generate a DPoP proof
with the private key

3 Exchange an authorization code
along with the proof and public key

6 Respond with tokens

4 Verify that the client
possesses the private key

8Send request along with
access token and DPoP proof

10 Response

7Generate a DPoP proof
with the private key

9 Verify the DPoP proof and its
binding to the access token

The API has to perform the following checks:
1. Verify the signature on the DPoP proof JWT

2. Verify that the payload of the DPoP proof
JWT corresponds to the API call

3. Verify that the access token on the request is
linked to the public key used to sign the
DPoP proof JWT

pdr.online

SENDER-CONSTRAINING TOKENS

Security-sensitive applications should consider adopting sender-
constrained tokens over bearer tokens.

mTLS handles most of the heavy lifting for using sender-constrained
tokens. DPoP operates on the application layer and requires more

effort, but offers more flexibility.

pdr.online

Use Resource Indicators to reduce the authority of access tokens1

Make PAR the default for your Authorization Code flows2

Sender-constrained tokens should be preferred over bearer tokens3

KEY TAKEAWAYS

Thank you!

https://pragmaticwebsecurity.com

Need training or security guidance?
Reach out to discuss how I can help

