E

SUPERCHARGING OAUTH 2.0 SECURITY

https://Pragmatic Web Security.com

Internet Engineering Task Force (IETF)
Request for Comments: 6749
Obsoletes: 5849

Category: Standards Track
ISSN: 2070-1721

D. Hardt, Egqg.
Microsoft
October 2012

Abstract

third—party application to obtain access on ijitg own behalf, This
L f i ' -0 protoco] described

Internet Engineering Task Force (IETF)
Request for Comments: 8707

Category: Standards Track

Published: February 2020

ISSN: 2070-1721

Resource Indicators for OAuth 2.0

Interne)
t Englneering Fask Foz
;¢ (IETF)

Reque
Categjﬁyfég Comments: o4,
B. Campbell Publisheg. :j”dards Track N. Saki

Ping Identity ISSN: 29 .17%1St <02l NAT.consullz'yIa
J. Bradley Bradllg)?
Yubico Yubic
(o]
Jones
1Crosoft

H. Tschofenig
Arm Limited

Abstract
USer agents h
. p— : . s su ey a
This document specifies an extencin~ =- T. Lodderstedt fization ;neans that 4) tc:eas e r°'”5erfr 1‘3:1; €, Teduest ang gq
s e : n o g ; n
Era ' . <k Force (IETF) yes.com tegrity Protectey MMunicatjon thro e is easy t, t throygh
Internet Engineering Ta 5. Campbell Internet Engineer; ANt gy OU0h the yse, = iMplement, i+
Request foT COmmentS% Qlié Piné Identity Request for Comméﬁ?g ngr Force (IETF) B JE0Es s not
. s Trac . C . 2449
CategoIy: Stanii;ier S021 N. Sakimura P3;§ESEY- Standards Track D. Fett
published: Sep NAT.Consulting o tShed: September 2953 Authlete
ISSN: 2070-1721 D. Tonge + 2070-1721 pi Campbell
Moneyhub Finaniia- lnf Igf:;ity
Technolog ' €y
Yubi
Fl co
F. S;ﬁ:t T. Lodderstedt
Tuconic
M. Jone
Self-Issyed Consultin;
D. Waite

sts

ed Authorization Reque
OAuth 2.9 p .

Smonstrating Proof of Possession (pp
oP)

OAuth 2.0 Push
Abstract

quest (PAR)
d of an OAUth 2. .
jrect S document ¢ i
ad tokens via 5 pr§§$f§?es seeeqonisn for sender i
ism allows_gg;sssslon mechanism on tﬁgn:tri}ning SAth 2.0
and refresh tokens. ® detection of Teplay affa§§:t192hlevel.
With access

horization 1€
sh the payload ©
zation server via

is used as
uest URI that 1s : .
t call to the authorization

Abstract
defines the pushed aut

h allows clients to pu
t to the authorl
hem with a req

quen

This document
endpoint, whic
authorization rques .
rovides
s e data in a subse

reference to the
endpoint.

HIGH-LEVEL OVERVIEW OF THE AUTHORIZATION CODE FLOW

SECURITY
TOKEN
SERVICE

° Frontchannel interactions to obtain an

authorization code \

Q) — (%

BACKEND e APl access with the API
access token

Backchannel interaction to exchange
the authorization code for tokens

USER

USER

THE AUTHORIZATION CODE FLOW

e | am Philippe with password FluffyDog17!

PKCE omitted for
brevity reasons

e Request to the STS to initialize the flow

SECURITY
TOKEN
SERVICE

e Who are you? Please authenticate to me!

e Good. Now follow this redirect to send the
authorization code to the application

A server-to-server request to exchange 0 o The access token representing

the authorization code from step 7

e Follow redirect to the callback endpoint Access APl with

0 | want you to access an APl on my behalf access token

0 Initialize the flow with the STS by BACKEND
redirecting the browser

the authority to access the API

o

API

o e The authorization request (a redirect to the STS)

1
2
3
4
5
6
7/

https://sts.restograde.com/authorize

?response_type=code e

&scope=reviews e

&client id=AB983CEYgx4mdUg3NKNKHjwfNALSFb42 e

Indicates the authorization code flow
We want a token with reviews access
The client requesting the token

&redirect_uri=https://virtualfoodie.com/callback e——— Where the STS should send the code

&code_challenge=29K8tipblinCeP .. HZ1PgLVxd9s .

&code_challenge_method=5256

| Flow security feature (PKCE)

THE AUTHORIZATION CODE FLOW

e | am Philippe with password FluffyDog17!
e Request to the STS to initialize the flow

USER

A

o Who are you? Please authenticate to me!

o Good. Now follow this redirect to send the
authorization code to the application

A server-to-server request to exchange o
the authorization code from step 7

o Follow redirect to the callback endpoint
0 | want you to access an APl on my behalf

Cd

AN

o Initialize the flow with the STS by
redirecting the browser

¥
2,

TOKEN
SERVICE

N

- AL

PKCE omitted for
brevity reasons

Access APl with
access token

o The access token representing
the authority to access the API

o)
o

BACKEND

API

TERMINOLOGY

This session

User

API

Security Token Service (STS)

Client

OAuth 2.0

Resource Owner

Resource Server

Authorization Server

Client

OpenlD Connect

End-User

OpenlD Provider

Relying Party

| am Dr. Philippe De Ryck

©

)4 E)?lpDelr’Es Google Developer Expert

Pragmatic Web Security

Founder of Pragmatic Web Security

<& SecAppDev SecAppDev organizer

| help developers with security

@ Hands-on in-depth security training

@ Advanced online security courses

Expert security advisory services

https://pdr.online

GRAB A COPY OF THE SLIDES ...

https://pragmaticwebsecurity.com/talks
O Ehpr X

arets?,

/in/PhilippeDeRyck

°°® .IQ
® 3:“.:.. °

https://infosec.exchange/@PhilippeDeRyck

" S *° zg:':'
Toniw
: gj‘?:ﬁf.

13 ;ﬁs“f:“.cb
SR
o333k .q]i

@) pdr.online Website icons created by Uniconlabs - Flaticon

REDUCING THE POWER OF ACCESS TOKENS

0 Request with
access token

CLIENT © Response

An access token to access three separate Restograde APIs

1A

2 "iss": "https://sts.restograde.com",

3 "aud": ["https://api.restograde.com/reviews", Including a full list of audiences
4 "https://api.restograde.com/restaurants",e—— leaks information about valid

5 "https://api.restograde.com/users"], APIs to any receiver of this token
6 "sub": "2262430d-c9cb-484f-9770-805893ff9518",

7 "scope": "restaurants:read reviews:write"

g %}

0 Request with
access token

CLIENT © Response

An access token to access three separate Restograde APIs

00O NdNO Ul &~ WN PR

{

"iss": "https://sts.restograde.com",

"aud": ["https://api.restograde.com/reviews",

"https://api.restograde.com/restaurants",

"https://api.restograde.com/users"],
"sub": "2262430d-c9cb-484f-9770-805893ff9518",
"scope": "restaurants:read reviews:write" e

Scopes for specific APIs are also
leaked to every receiver of the
access token

CLIENT

0 Request with
access token

a Response

An access token to access three separate Restograde APIs

{

"iss": "https://sts.restograde.com",

"aud": ["https://api.restograde.com/reviews",
"https://api.restograde.com/restaurants", @=———
"https://api.restograde.com/users" 1,

Encrypting the token is difficult
when there are multiple receivers
(decryption happens with a private

key that should not be shared)

"sub": "2262430d-c9cb-4841-9770-805893ff9518",
"scope": "restaurants:read reviews:write"

00O NdNO Ul &~ WN PR

0 Request with
access token

CLIENT © Response

Internet Engineering Task Force (IETF) B. Campbell

Request for Comments: 8707 Ping Identity
Category: Standards Track J. Bradley
Published: February 2020 Yubico
ISSN: 2070-1721 H. Tschofenig

Arm Limited

Resource Indicators for OAuth 2.0

Abstract

This document specifies an extension to the OAuth 2.0 Authorization
Framework defining request parameters that enable a client to
explicitly signal to an authorization server about the identity of
the protected resource(s) to which it is requesting access.

Q e The authorization request (a redirect to the STS)

1
2
3
4
5
6
7/
8

https://sts.restograde.com/authorize
?response_type=code
&client_id=1Y5g0BKB7Mow4yD lb6rdGPs02i1g70sv
&scope=read:restaurants write:reviews
&resource=https://api.restograde.com/reviews

&resource=https://api.restograde.com/restaurants

&redirect_uri=https://app.restograde.com/callback
& [.. state / code_challenge / code_challenge_method ..]

THE AUTHORIZATION CODE FLOW

e | am Philippe with password FluffyDog17!
e Request to the STS to initialize the flow

USER

Cd

o Who are you? Please authenticate to me!

Good. Now follow this redirect to send the
authorization code to the application

A server-to-server request to exchange
the authorization code from step 7

0 Follow redirect to the callback endpoint
c | want you to access an APl on my behalf

>

&
<

o Initialize the flow with the STS by
redirecting the browser

¥
2,

TOKEN
SERVICE

A

A 4

¢

BACKEND

Access APl with

access token

+ The identifiers of the requested
resource servers (APls)

PKCE omitted for
brevity reasons

The access token representing
the authority to access the API

ol
o

API

© Requesting access tokens with a specific resource

0O O Ul &~ WN -

POST /oauth/token
Host: sts.restograde.com

grant_type=authorization_code

&client_id=1Y5g0BKB7Mow4yD1b6rdGPs02i1g70sv

&code=Sp1x10BeZQQYbYSO6WXSbIA

&resource=https://api.restograde.com/reviews e

]

& [.. redirect_uri / code_verifier

Requesting an access token for a

specific resource server (API)

USER

THE AUTHORIZATION CODE FLOW

o | am Philippe with password FluffyDog17!
e Request to the STS to initialize the flow

le——

r q

o Who are you? Please authenticate to me!

Good. Now follow this redirect to send the
authorization code to the application

0 Follow redirect to the callback endpoint
0 | want you to access an APl on my behalf

A server-to-server request to exchange o
the authorization code from step 7

Cd

E @ !"'tialze the flow with the STS by
redirecting the browser

¥
2,

TOKEN
SERVICE

N

A 4

¢

BACKEND

PKCE omitted for
brevity reasons

The access token representing
the authority to access the API

Access APl with
access token

3
ees

API

© 7he access token issued by the STS

o U1 B~ WN -

{

"iss": "https://sts.restograde.com",

"aud": "https://api.restograde.com/reviews",
"sub": "2262430d-c9cb-484f-9770-805893ff9518",

A specific target audience

The STS does "downscoping" by only

"scope": "reviews:write" e

including relevant scopes for the audience

THE AUTHORIZATION CODE FLOW

e | am Philippe with password FluffyDog17!
e Request to the STS to initialize the flow

USER

Cd

o Who are you? Please authenticate to me!

Good. Now follow this redirect to send the
authorization code to the application

A server-to-server request to exchange
the authorization code from step 7

o Follow redirect to the callback endpoint
o | want you to access an APl on my behalf

Cd

a Initialize the flow with the STS by
redirecting the browser

¥
2,

TOKEN
SERVICE

N

0|0

%

BACKEND

PKCE omitted for
brevity reasons

The access token representing
the authority to access the API

Access APl with
@ access token og

API

The client can obtain additional access

tokens by running a refresh token flow
with the resource parameter

The Resource Indicators spec helps to reduce the
authority of an access token to a single audience.

Resource Indicators are especially useful in large and
complex architectures.

@ pdr.online

SECURING THE AUTHORIZATION REQUEST

Q Q The authorization request (a redirect to the STS)

https://sts.restograde.com/authorize

?response_type=code e

&scope=reviews e

&redirect_uri=https://virtualfoodie.com/callback e——— Where the STS should send the code

1

2

3

4 &client_id=AB983CEYgx4mdUg3NKNKHjwfNAL5Fb42 e
5

§) &code_challenge=29K8tipblinCeP ..

7

&code_challenge_method=5256

HZ1PqLVxd9s _

I

This URL cannot ensure the integrity of
the parameters, nor does it authenticate

the client that initiated the flow

THE AUTHORIZATION CODE FLOW FOR OAUTH

o | am Philippe with password FluffyDog17!
o Request to the STS to initialize the flow

USER

r g

o Who are you? Please authenticate to me!

° Good. Now follow this redirect to send the
authorization code to the application

A server-to-server request to exchange
the authorization code from step 7

o Follow redirect to the callback endpoint
0 | want you to access an APl on my behalf

r g

&
<

e Initialize the flow with the STS by
redirecting the browser

3
2,

TOKEN
SERVICE

A

o o The access token representing
the authority to access the API

‘@

| Flow security feature (PKCE)

Access APl with
access token

BACKEND

Indicates the authorization code flow
We want a token with reviews access
The client requesting the token

(%

API

Workgroup: Web Authorization Protocol T. Lodderstedt

Internet-Draft: SPRIND
draft-ietf-oauth-security-topics-27 J. Bradley
Updates: 6749, 6750, 6819 (if approved) Yubico
Published: 7 May 2024 A. Labunets
Intended Status: Best Current Practice Independent Researcher
Expires: 8 November 2024 D. Fett

Authlete

OAuth 2.0 Security Best Current Practice

Abstract

This document describes best current security practice for OAuth 2.0.
It updates and extends the threat model and security advice given in
RFC 6749, RFC 6750, and RFC 6819 to incorporate practical
experiences gathered since OAuth 2.0 was published and covers new
threats relevant due to the broader application of OAuth 2.0.

Further, it deprecates some modes of operation that are deemed less
secure or even insecure.

4.1.

Insufficient Redirect URI Validation T. Lodderstedt
SPRIND

Some authorization servers allow clients to register redirect URI J. Bradle
patterns instead of complete redirect URIs. The authorization ’) y
servers then match the redirect URI parameter value at the Yubico
authorization endpoint against the registered patterns at runtime. A. Labunets

This approach allows clients to encode transaction state into
additional redirect URI parameters or to register a single pattern

for multiple redirect URIs.

This approach turned out to be more complex to implement and more
error-prone to manage than exact redirect URI matching. Several
successful attacks exploiting flaws 1n the pattern matchlng

implementation or concrete confic
wild (see, e.g., [research.rub2])
redirect URI effectively breaks c
authentication (depending on grar
attacker to obtain an authorizati

ITTLS goccumerit uesd
It updates and ext
RFC 6749, RFC 675¢
experiences gathei
threats relevant c
Further, it deprec
secure or even ins

Independent Researcher
D. Fett
Authlete

L--L:--

4.8. PKCE Downgrade Attack

An authorization server that supports PKCE but does not make its use
mandatory for all flows can be susceptible to a PKCE downgrade
attack.

The first prerequisite for this attack is that there is an attacker-
controllable flag in the authorization request that enables or
disables PKCE for the particular flow. The presence or absence of
the code_challenge parameter lends itself for this purpose, i.e.,
the authorization server enables and enforces PKCE if this parameter
is present in the authorization request, but does not enforce PKCE
if the parameter is missing.

Writeup: Keycloak open redirect (CVE-2023-6927)

11 January 2024

This post covers the technical details of CVE-2023-6927 which allows an attacker to create malicious Keycloak
authorization request URLs that bypass the redirect URI validation. This can be exploited to steal a victim'’s
authorization code or access token, depending on the client configuration.

The vulnerability affects al// OAuth 2.0 clients configured with a redirect URI ending with a x in Keycloak < 23.0.4.

For additional information, see GitHub security advisory GHSA-9vm7-v8wj-3fqw.

Internet Engineering Task Force (IETF) N. Sakimura

Request for Comments: 9101 NAT.Consulting
Category: Standards Track J. Bradley
Published: August 2021 Yubico
ISSN: 2070-1721 M. Jones

Microsoft

The OAuth 2.0 Authorization Framework: JWT-Secured Authorization Request
(JAR)

Abstract

The authorization request in OAuth 2.0 described in RFC 6749 utilizes
query parameter serialization, which means that authorization request
parameters are encoded in the URI of the request and sent through
user agents such as web browsers. While it is easy to implement, it
means that a) the communication through the user agents is not
integrity protected and thus, the parameters can be tainted, b) the
source of the communication is not authenticated, and c) the
communication through the user agents can be monitored. Because of
these weaknesses, several attacks to the protocol have now been put
forward.

This document introduces the ability to send request parameters in a
JSON Web Token (JWT) instead, which allows the request to be signed
with JSON Web Signature (JWS) and encrypted with JSON Web Encryption
(JWE) so that the integrity, source authentication, and
confidentiality properties of the authorization request are attained.
The request can be sent by value or by reference.

USER

THE AUTHORIZATION CODE FLOW WITH JAR

e I am Philippe with password FluffyDog17!
o JWT-based request to the STS to initialize the flow

0 Who are you? Please authenticate to me!

@ Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

Exchange the authorization code from step 11
and include the code verifier

Generate JWT with flow parameters e

m Follow redirect to the application's callback endpoint
a Request that triggers the initialization of the flow

Store the code challenge
e along with the
authorization code

Calculate the SHA256

SECURITY .
TOKEN hash of the code verifier
SERVICE and compare to the

stored code challenge

@ Relevant tokens for this

particular use case

Handle tokens according

-\@ to the use case at hand

The configuration of the flow is
provided as a signed JWT object,

<€

e Initialize the flow using a signed JWT with parameters

Generate a random value (code verifier) and
associate it with the user's session (e.g., keep in a cookie)

pa{ 2dding integrity and authenticity |,q
to the data
(code challenge)

© © 7he redirect URI

1 https://sts.restograde.com/authorize

2 ?client_id=1Y590BKB7Mow4yD1b6rdGPs0211g70sv e Indicates the client making the request
3 &request=eyJhbGci0iJQUzIINiIsInR5cCI6Im9hdXRoOLWF1dGh6LX
4 J1cStqd3QifQ.eyJpc3Mi0iJsWTVnNMEILQ]jdNb3c@eURsYjZyZEdAQcO
5 8yaTFnNN@9zdiIsImF1ZCI6Imh@dHBz0i8vc3RzLnJ1c3RvZ3JhZGUuY
§)
7
8

¢— The configuration of the flow

a8J5iQtbP4IKzGXvHoJIvPh-T40xgA9QZj9erIT2wEVBcieA00340z12
Y5Z953bgpSb404NbFKXa_1D4GTJ2LGF48IGjRQ

I THE AUTHORIZATION CODE FLOW WITH JAR
. R . o | am Philippe with password FluffyDog17! Q ::::;eg twh;::::: cHallenge
The JWT is signed by the private @ WT-based request to the ST to initialize the flow Oﬁ authorization code
key Of the Client and contains a” 0 Who are you? Please authenticate to me! sgr%l'l(lél;:'v @ ::Ischu:;t:ht:::d:l\f;?ﬁer
g i Mok folls il ialiveci budk o th lication, SERVICE and compare to the
the traditional flow - Bepplapsurpbpdbonialaplbiniar g : stored code challenge
configuration parameters

E Exchange the authorization code from step 11 @ @ Relevant tokens for this

and include the code verifier particular use case

USER
. Handle tokens according
Generate JWT with flow parameters
g o L 4 @ to the use case at hand
@ Follow redirect to the application's callback endpoint
o Request that triggers the initialization of the flow %
= o Initialize the flow using a signed JWT with parameters BACKEND Calculate the SHA256 hash
_/ Generate a random value (code verifier) and o ;:cfot:::::;e\’l;:;ier

associate it with the user's session (e.g., keep in a cookie)

eyJhbGci0iJQUzIINiIsInR5cCI6Im9hdXRoLWF
1dGh6LXJ1lcStqd3QiLCIrawWQiOiJoaGIHeGxibW
RsSWpvaVNtaEZUIn@.eyJpc3Mi0iJsWTVnMEJILQ
jdNb3c@eURsYjZyZEdQc@8yaTFnN@9zdiIsImF1
ZCI6Imh@dHBz0i8vc3RzLnJI1c3RvZ3IhZGUuY29
tIiwicmVzcG9uc2VFdHIwZSI6ImNVZGUiLCIjbG
1lbnRfaWQi0iJsWTVnNMEJLQjdNb3c@eURsYjZyZ
EdQcO8yaTFnN@9zdiIsInJ1ZGlyZWN@OX3VyaSI6
Imh@dHBz0i8vYXBwLNnJ Lc3RvZ3JIhZGUuY29tL2N
hbGXxiYWNrIiwic2NvcGUi0iJyZWFkIiwic3RhdG
Ui0iJzMHd6b2ptMnc4YzIzeHpwcmtrNiIsImNvZ
GVTY2hhbGx1bmd1IjoiSmhFTjBBbW5gNOLigKZX
abDVQeFdpdFpZSzF3b1doNVB4V210WlkiLCJjb2R
IX2NoYWxsZW5nZV9tZXRob2Qi0iJTMjU2In0. L]
pskbjoOrYhwxt4BwiiwlKu-
nmhGuOFUvgBrv7xLFu6Tkkes6p9c7xvyulp017Q
ptCZIN517wQyXp5VY32fZ0dF9akGEhQymPSvyBe
wzZgDrEOM8ZD_-
LbQh1g20wE3ekg4mwIsYVZVRA4RQIMMN9JuoQHU
cuBRDke_bdR1K6XosHQuy-
wEz7j8yix8vcqGgSebMvPN3nZjShMACTd9QIpZX
gin5NgX1ByFj9iRecByg0K6snJwz752s79R6987
1Tz8Ap_vCcVtIRLinBCzyjSOIHEBMvrvuOxzxCH
4comCM96fyi47D5yRZFsUImTIDIr1D4y0IVbQIu
2GKA_bULw

"alg": "PS256",
"typ": "oauth-authz-req+jwt",
"kid": "hhbGx1lbmd1lIjoiSmhFT"

"iss'": "1Y590BKB7Mow4yD1b6rdGPs02i1g70sv",

"aud": "https://sts.restograde.com",

"response_type'": "code",

"client_id": " 1Y59g0BKB7Mow4yD1b6rdGPs02i1g70sv",
"redirect_uri": "https://app.restograde.com/callback",
"scope": "read",

"state": "s@wzojm2w8c23xzprkk6",

"code_challenge": "JhENOAmNnj .. xWitZYK1woWh5PxWitzZY",
"code_challenge_method": "S256"

The header of the decoded JWT object

1A
- | 2 "alg": "PS256",
The header defines the JWT type | ~—e"typ": "oauth-authz-reg+jwt",
The key identifier helps the STS to T @"kid": "hhbGx1lbmdlIjoiSmhFT"
select the right key from the client 5)

The payload of the decoded JWT object

1A
The issuer of the JWT is the client, 2 ° "iss'": "1Y590BKB7Mow4yD1b6rdGPs02i1g70sv",
and the audience is the STS 3 "aud": "https://sts.restograde.com",
; 4 "response_type'": "code",
The client ID must match the — e "client_id": "1Y5g0BKB7Mow4yD1b6rdGPs02i1g70sv",
client ID provided in the URL _ _
6 "redirect_uri": "https://app.restograde.com/callback",
7 "scope": "read",
The JWT request contains the 8 "state": "s@wzojm2w8c23xzprkk6",
parameters thatusedtobe === w_ ,4e challenge": "JNENOAMNj .. xWitZYKlwoWh5PxWitzyY",
present in the URL 10 "code_challenge_method": "S256"

[EY
[
“

|:| JAR in action

JWT-Secured Authorization Requests enable integrity protection
for the parameters in the authorization request.

JAR eliminates increasingly common attacks against the
authorization request being sent over the insecure frontchannel.

@ pdr.online

Internet Engineering Task Force (IETF) T. Lodderstedt
Request for Comments: 9126 yes.com
Category: Standards Track B. Campbell
Published: September 2021 Ping Identity
ISSN: 2070-1721 N. Sakimura
NAT.Consulting

D. Tonge

Moneyhub Financial

Technology

F. Skokan

Auth@

OAuth 2.0 Pushed Authorization Requests

Abstract

This document defines the pushed authorization request (PAR)
endpoint, which allows clients to push the payload of an OAuth 2.0
authorization request to the authorization server via a direct
request and provides them with a request URI that is used as

reference to the data in a subsequent call to the authorization
endpoint.

USER

THE AUTHORIZATION CODE FLOW WITH PAR

e I am Philippe with password FluffyDog17!
e Request to the STS with the PAR ID

e Validate the PAR request

€ SECURITY and generate a unique ID
0 Who are you? Please authenticate to me! TOKEN
e Good. Now follow this redirect back to the application, Sl
so it can extract the authorization code from the URL
Submit the flow configuration using))
a Pushed Authorization Request o 0 Respond with the unique ID
Exchange the authorization code from step 10 m Relevant tokens for this
and include the code verifier particular use case
@ Handle tokens according
to the use case at hand
@ Follow redirect to the application's callback endpoint
a Request that triggers the initialization of the flow S
<€
e Initialize the flow with the PAR ID BACKEND

PKCE omitted for
brevity reasons

Q The request to push the data of the authorization request

O© 00 NO Ul A~ WN B

POST /oauth/par e

response_type=code
&scope=openid profile email
&client_id=FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42
&redirect_uri=https://restograde.com/callback
&code_challenge=29K8tipblinCeP .. HZ1PgLVxd9s
&code_challenge_method=5256

The STS supports a new

¢— The configuration of

&client_secret=60DRv0Oq..0VOSWI e

PAR endpoint

the flow

The client authenticates when using PAR

THE AUTHORIZATION CODE FLOW WITH PAR

0 | am Philippe with password FluffyDog17!
e Request to the STS with the PAR ID

The STS can now validate the
flow parameters before the
actual flow has even started.

USER

A

A 4

o Who are you? Please authenticate to me!

e Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

Submit the flow configuration using
a Pushed Authorization Request

Exchange the authorization code from step 10
and include the code verifier

@ Follow redirect to the application's callback endpoint
o Request that triggers the initialization of the flow

A

>

o Initialize the flow with the PAR ID

i
Q o Validate the PAR request

SECURITY and generate a unique ID

TOKEN
SERVICE

A

e o Respond with the unique ID

@ @ Relevant tokens for this
particular use case

, @ Handle tokens according

A to the use case at hand

&

BACKEND

PKCE omitted for
brevity reasons

o The response to the PAR request
{

"request_uri": "urn:ietf:params:oauth:request_uri:
6esc_11ACC5bwc@141tcldeY22c",
"expires_in": 60 e The lifetime of this PAR config

e— The ID for this PAR configuration

u ~r W N =

}

THE AUTHORIZATION CODE FLOW WITH PAR

0 | am Philippe with password FluffyDog17! OQ

e Request to the STS with the PAR ID Q s A
— > alidate the request
€ SECURITY o and generate a unique ID
o Who are you? Please authenticate to me! TOKEN
e Good. Now follow this redirect back to the application, SERVICE
so it can extract the authorization code from the URL A
Submit the flow configuration using 3 :
E a Pushed Authorization Request ° o Respond with the unique ID
USER Exchange the authorization code from step 10 @ Relevant tokens for this
and include the code verifier particular use case
d @ Handle tokens according
= to the use case at hand

A4

@ Follow redirect to the application's callback endpoint
o Request that triggers the initialization of the flow
= o Initialize the flow with the PAR ID BACKEND
PKCE omitted for

4
brevity reasons

e e The redirect URI with the PAR ID

1 https://sts.restograde.com/authorize

2 ?client_id=1Y5g0BKB7Mow4yDlb6rdGPs0211g70sv e Indicates the client making the request
3 &request_uri=urn:ietf:params:oauth:request_uri:6el1ACC5 _ The ID provided by the STS in step 4

4 ? bwc@141ltcldeY22c

The PAR identifier is formatted
as a URI and refers to a
configuration that was pushed
to the STS by the client before

initializing the flow THE AUTHORIZATION CODE FLOW WITH PAR
o | am Philippe with password FluffyDog17! Q
e Request to the STS with the PAR ID QQ s A
— > o alidate the request
€ and generate a unique ID
0 Who are you? Please authenticate to me! si%l:éuy & a
o Good. Now follow this redirect back to the application, SERVICE
so it can extract the authorization code from the URL A
Submit the flow configuration using § .
E a Pushed Authorization Request ° o Respond with the unique ID
USER Exchange the authorization code from step 10 @ Relevant tokens for this
and include the code verifier particular use case
Handle tokens according
LY @ to the use case at hand

A

@ Follow redirect to the application's callback endpoint
o Request that triggers the initialization of the flow I
= o Initialize the flow with the PAR ID BACKEND

\) PKCE omitted for
brevity reasons

D PAR in action

When using PAR, make sure clients are no

longer allowed to use a regular
Authorization Code flow

Pushed Authorization Requests eliminate the need to send flow
configuration parameters over the frontchannel and is quickly becoming
a recommended best practice.

If desired, the PAR request can contain a JWT-secured Authorization
Request, even though the combination of PAR and JAR is mostly overkill.

@ pdr.online

SENDER-CONSTRAINED TOKENS

USER

e | am Philippe with password FluffyDog17!
e Request to the STS to initialize the flow

SECURITY
TOKEN
SERVICE

e Who are you? Please authenticate to me!

e Good. Now follow this redirect to send the
authorization code to the application

A server-to-server request to exchange 0
the authorization code from step 7

PKCE omitted for
brevity reasons

The access token representing

Access tokens are often bearer
tokens, allowing anyone that
possesses them to use them.

e Follow redirect to the callback endpoint
0 | want you to access an APl on my behalf

0 Initialize the flow with the STS by BACKEND
redirecting the browser

Access APl with ﬁ
access token 5

API

Proof-of-possession mechanisms transform

bearer tokens into sender-constrained tokens

Internet Engineering Task Force (IETF) B. Campbell

Request for Comments: 8705 Ping Identity
Category: Standards Track J. Bradley
Published: February 2020 Yubico
ISSN: 2070-1721 N. Sakimura
Nomura Research

Institute

T. Lodderstedt

YES.com AG

OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound
Access Tokens

Abstract

This document describes OAuth client authentication and certificate-
bound access and refresh tokens using mutual Transport Layer Security
(TLS) authentication with X.509 certificates. OAuth clients are
provided a mechanism for authentication to the authorization server
using mutual TLS, based on either self-signed certificates or public
key infrastructure (PKI). OAuth authorization servers are provided a
mechanism for binding access tokens to a client's mutual-TLS
certificate, and OAuth protected resources are provided a method for
ensuring that such an access token presented to it was issued to the
client presenting the token.

PROOF-OF-POSSESSION THROUGH TLS CERTIFICATES

¢

a Setup an mTLS connection and
exchange an authorization code

Generate tokens and bind

€ them to the certificate
a Respond with tokens SECURITY
CLIENT TOKEN
SERVICE
Setup an mTLS connection
Ioand make an API call e Response
with the access token

AP e Verify that the TLS certificate matches

the certificate in the access token

°I> Public key Eﬁ Private key l S’?I Certificate

SENDER-CONSTRAINED TOKENS WITH MTLS

A JWT access token with an embedded certificate fingerprint

1A

2 "sub": "b6rdGPs02iBKB7s02i",

3 "aud": "https://api.example.com",

4 "azp": "1Y59g0BKB7Mow4yD1b6rdGPs02i1g70sv",
5 "iss": "https://sts.restograde.com/",

6 "exp": 1419356238,

7 "iat": 1419350238,

8 "scope": "read write",

9 "enf': {

10 "x5t#5256": "bwcK0@esc3ACC3DB2Y5_1ESsXE8091tc0@5089jdN-dg2" e—— The fingerprint of the cert
11 s

12}

MTLS is not always practical to use, especially in restricted
application environments or complex infrastructures

DPoP offers an application-level alternative to enable
sender-constrained tokens

Internet Engineering Task Force (IETF) D. Fett
Request for Comments: 9449 Authlete
Category: Standards Track B. Campbell
Published: September 2023 Ping Identity
ISSN: 2070-1721 J. Bradley
Yubico

T. Lodderstedt

Tuconic

M. Jones

Self-Issued Consulting

D. Waite

Ping Identity

OAuth 2.0 Demonstrating Proof of Possession (DPoP)

Abstract

This document describes a mechanism for sender-constraining OAuth 2.0
tokens via a proof-of-possession mechanism on the application level.
This mechanism allows for the detection of replay attacks with access
and refresh tokens.

THE CONCEPT OF DPOP

Generate a
public/private key palr
e Exchange an authorization code
along with the proof and public key

Generate a DPoP proof e
with the private key

Generate a DPoP proof
with the private key

SECURITY
TOKEN
SERVICE

e Respond with tokens

CLIENT

Send request along with e
access token and DPoP proof

@ Response

o

API

DPoP ensures that only the client
holding the private key can use the
access token on API calls

e Verify the DPoP proof and its
binding to the access token

@ Public key (=2 Private key

Verify that the client
possesses the private key

Generate tokens and bind
them to the public key

THE CONCEPT OF DPOP

Generate a ° é
public/private key pair

Generate a DPoP proof e
with the private key

e Exchange an authorization code

o Verify that the client
along with the proof and public key

possesses the private key

Generate tokens and bind

e Respond with tokens SECURITY them to the public key

CLIENT TOKEN
SERVICE

€

Generate a DPoP proof o
with the private key

Send request along with ° @ Response

access token and DPoP proof

API

e Verify the DPoP proof and its
binding to the access token

@ Public key (=2 Private key

Q The header and payload of the DPoP proof JWT e The JWT is signed by the client's private key

O© 00 NJNO Ul & WN -

R
A W N EFPOS

// Header
{
"typ": "dpop+jwt", e The token type indicates a JWT DPoP proof
"alg": "ES256",
"jwk": { ... public key ... }® The client's public key is part of the header
I3
//Payload
{
"jti": "-BwC3EScb6acc2lTc", e A unique identifier generated by the client
"htm": "POST",
"htu": "https://sts.restograde.com/token', e——— This DPoP proof is for a token request to the STS
"iat": 1562262616

THE CONCEPT OF DPOP

Exchange an authorization code

‘ e along with the proof and public key
>

CLIENT

SECURITY
TOKEN
SERVICE

e The token request with the authorization code and DPoP proof e—— A traditional request to the token endpoint

POST /token
Host: sts.restograde.com
DPoP: eyJ0eXAi0iJkcG9 .. fbV37xRZT3Lg * The DPoP proof generated in step 2

grant_type=authorization_code
&client_id=1Y5g0BKB7Mow4yD1b6rdGPs02i1g70sv
&redirect_uri=https://app.restograde.com/callback
&code=Sp1x10BeZQQYbYS6WXSbIA
&code_verifier=1T5q6nbPQRtdj..~IUdKErVDFG. fF4z7CzCxo

O© 00O O U1 & WDN B

THE CONCEPT OF DPOP

Generate a ° é
public/private key pair

e Exchange an authorization code
along with the proof and public key

Generate a DPoP proof e

with the private key <

Generate a DPoP proof o e Respond with tokens

with the private key

CLIENT

Send request along with ° @ Response

access token and DPoP proof

API

e Verify the DPoP proof and its
binding to the access token

@ Public key (=2 Private key

SECURITY
TOKEN
SERVICE

° Verify that the client
possesses the private key

Generate tgkens and bind
them to the¢ public key

The STS verifies the
signature of the DPoP
proof JWT using the
embedded public key

THE CONCEPT OF DPOP

Generate a ° é
public/private key pair

Generate a DPoP proof e
with the private key

e Exchange an authorization code

o Verify that the client
along with the proof and public key

possesses the private key

Generate tokens and bind

e Respond with tokens SECURITY them to the public key

CLIENT TOKEN
SERVICE

€

Generate a DPoP proof o
with the private key

Send request along with ° @ Response

access token and DPoP proof

API

e Verify the DPoP proof and its
binding to the access token

@ Public key (=2 Private key

6 The generated access token bound to the client's public key

1T {e A traditional self-contained access token
2 "iss": "https://sts.restograde.com",

3 "aud": "https://api.restograde.com",

4 "client_id": "1Y5g0BKB7Mow4yD1b6rdGPs02i1g70sv",

5 "sub": "2262430d-c9cb-484f-9770-805893ff9518",

6 .

7 "cnf": {

8 "jkt": "bwcK@esc3ACC3DB2Y .. 8091tc05089jdN-dg2" e=— The fingerprint of the client's public key
9 Iy

10 }

Generate a
public/private key palr

Generate a DPoP proof
with the private key
Generate a DPoP proof
with the private key CLIENT

Send request along with
access token and DPoP proof

THE CONCEPT OF DPOP

Exchange an authorization code
along with the proof and public key

@ Response

3

0,

3

e Respond with tokens SECURITY

TOKEN
SERVICE

A traditional token response
with an access token / refresh
token / identity token

0 Verify the DPoP proof and its
binding to the access token

Om Public key Gﬁ Private key

Verify that the client
possesses the private key

Generate tokens and bind
them to the public key

THE CONCEPT OF DPOP

Generate a ° é
public/private key pair

Generate a DPoP proof e
with the private key

e Exchange an authorization code

o Verify that the client
along with the proof and public key

possesses the private key

Generate tokens and bind

e Respond with tokens SECURITY them to the public key

CLIENT TOKEN
SERVICE

€

Generate a DPoP proof 0
with the private key

Send request along with ° @ Response

access token and DPoP proof

API

e Verify the DPoP proof and its
binding to the access token

@ Public key (=2 Private key

0 The header and payload of the DPoP proof JWT e The JWT is signed by the client's private key

O© 00 NNO Ul & WN -

S
A W N EFPOS

// Header

{

}

//Payload

{

Iltypll :
Ila'Lgll :
Iljwkll :

"j till :
"htm" :
11 htull :
"iat":
"ath":

"dpop+jwt", e The token type indicates a JWT DPoP proof

"ES256",

{ ... public key ... }* The client's public key is part of the header
"elj3V_bKic8-LAEB", e A unique identifier generated by the client

"GET",

"https://api.restograde.com/reviews", e— This DPoP proof is for a GET request to an APl endpoint

1562262618
"fUHy02r2Z3DZ..53EsNrWBb@xWXoaN' , =———— The hash of the access token associated with this proof

THE CONCEPT OF DPOP

N 4

CLIENT

Send request along with e

access token and DPoP proof

API

0 The request to the API with the access token and DPoP proof JWT

1 GET /reviews

2 Host: api.restograde.com

3 @ Authorization: DPoP eyJlOf37x3LgRZTbV .. eRAi0iJkcG9 e— The access token issued by the STS

4 | DPoP: eyJ0eXAiOiJkcG9 .. fbV37xRZT3Lg ® The DPoP proof JWT generated in step 7

The Authorization header no
longer carries a bearer token,
but a DPoP token

THE CONCEPT OF DPOP
o @ @

Generate a DPoP proof e
with the private key

e Exchange an authorization code

o Verify that the client
along with the proof and public key

possesses the private key

€

Generate tokens and bind

e Respond with tokens SECURITY them to the public key
CLIENT TOKEN

SERVICE

Generate a DPoP proof o
with the private key

Send request along with
Response
access token and DPoP proof 0 @ P

The API has to perform the following checks:
QQ 1. Verify the signature on the DPoP proof JWT

Q 2. Verify that the payload of the DPoP proof

API &——1 JWT corresponds to the API call
e Verify the DPoP proof and its

binding to the access token 3. Verify that the access token on the request is
linked to the public key used to sign the

DPoP proof JWT
@ Public key (=2 Private key P

Security-sensitive applications should consider adopting sender-
constrained tokens over bearer tokens.

mTLS handles most of the heavy lifting for using sender-constrained

tokens. DPoP operates on the application layer and requires more
effort, but offers more flexibility.

@ pdr.online

. DR ARG ST
7 \kmﬁfa\ ;Fﬁé_gg
; ‘m\ \»&.v‘“& t§¢¢ k,ymm.o‘n.
Y e «V.ﬂagngmgﬁz Z
L L \PN&VK?&%\A_V S Jr ¥ 1
AV \.%»Q.VN.AE&#: Lt

MG AT~

'EJNK‘M

g A:b'&%v e
T

L)

1"-«.
r‘a’ av,

)Vié-; *.mﬁ. 4
<1 ézi
AR SN TSNS,

A

I\ m\\\imw @
=

IS NN e

Jw/hﬁ Nl d/m_n .L@ w_,,w_
Nﬂ\\!ﬁm AR @m. head
N

,!‘«su‘t | \k J

A

KEY TAKEAWAYS

1 Use Resource Indicators to reduce the authority of access tokens

p. Make PAR the default for your Authorization Code flows

3 Sender-constrained tokens should be preferred over bearer tokens

@ pdr.online

Need training or security guidance?
Reach out to discuss how | can help

https://pragmaticwebsecurity.com

