
DR. PHILIPPE DE RYCK

https://Pragmatic Web Security.com

SEVEN THINGS
ABOUT API SECURITY

Broken function level authorization5

Unrestricted resource consumption4

Broken object property-level authorization3

Broken authentication2

Broken object level authorization1

Unsafe consumption of APIs10

Improper inventory management9

Security misconfiguration8

Server-side request forgery7

Unrestricted access to sensitive business flows6

API Security

pdr.online https://portswigger.net/daily-swig/unpatched-bug-chain-poses-mass-account-takeover-threat-to-yunmai-weight-monitoring-app

https://dropbox.tech/security/bug-bounty-program-ssrf-attack

I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

SecAppDev organizer

https://pdr.online

I help developers with security

Hands-on in-depth security training

Advanced online security courses

Security advisory services

pdr.online

/in/PhilippeDeRyck

GRAB A COPY OF THE SLIDES ...

Website icons created by Uniconlabs - Flaticon

https://pragmaticwebsecurity.com/talks

@philippederyck.bsky.social

Broken function level authorization5

Unrestricted resource consumption4

Broken object property-level authorization3

Broken authentication2

Broken object level authorization1

Unsafe consumption of APIs10

Improper inventory management9

Security misconfiguration8

Server-side request forgery7

Unrestricted access to sensitive business flows6

API Security

pdr.online Perimeter / VPC / Firewall / WAF / …

pdr.online
Photo by Robert V. Ruggiero on Unsplash

Photo by Thula Na on Unsplash

pdr.online Perimeter / VPC / Firewall / WAF / …

pdr.online Photo by Shalone Cason on Unsplash

pdr.online Perimeter / VPC / Firewall / WAF / …

1 Request with URL parameter

localhost

This attack is known as Server-Side
Request Forgery (SSRF)

?
pdr.online

How does SSRF happen?

pdr.online

1 Request with a URL as data

4 Response

2 Load resource with URL

3 Response

SSRF occurs in all kinds of services,
such as image loading, link

previews, webhooks, proxies, ...

An SSRF vulnerability can lead to
requests being sent to localhost,
internal hosts, token services, or

cloud security services ...

pdr.online

https://mycdn.example.com/image.png

Valid input

https://127.0.0.1:8080

Invalid input

pdr.online https://cheatsheetseries.owasp.org/assets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet_Orange_Tsai_Talk.pdf

pdr.online

SSRF AT DROPBOX

https://dropbox.tech/security/bug-bounty-program-ssrf-attack

pdr.online

FIXING SSRF AT DROPBOX

https://dropbox.tech/security/bug-bounty-program-ssrf-attack

pdr.online

FIXING SSRF BY REMOVING AMBIGUITY ON THE SERVER

Accept a URL as input on the server and immediately transform it into a unambiguous value

1
2
3
4
5
6

const input = req.body.url
// Transform the input into a single representation
const u = new URL(input)
// Construct a unambiguous safe URL to use in the application
const safeUrl = new URL(`https://${u.host}${u.pathname}${u.search}`)
// Check if ‘safeUrl’ is actually safe

The server-side code interprets the
input URL only once, leaving no

room for confusion between two
different URL parsers

Fix any part of the URL that is not
supposed to be controlled by the

client (e.g., the scheme)

The safe URL can now be used to
check against an allow list of URLs

pdr.online

PROTECT AGAINST SSRF

SSRF vulnerabilities often occur when there's ambiguity in
matching against allow-lists.

Ensure the data used for server-side requests is unambiguous
and trustworthy according to your security policy.

Broken function level authorization5

Unrestricted resource consumption4

Broken object property-level authorization3

Broken authentication2

Broken object level authorization1

Unsafe consumption of APIs10

Improper inventory management9

Security misconfiguration8

Server-side request forgery7

Unrestricted access to sensitive business flows6

API Security

“
“

Account takeover through ‘forgot
password’ functionality.

The victim will get an email with
a unique 6 digit code that allows

to reset the password.

https://fortbridge.co.uk/research/mass-account-takeover-yunmai/

pdr.online

Breaking authentication

pdr.online

AVOID LEAKING INFORMATION

APIs often (unknowingly) leak information that
enables attacks such as username enumeration.

Carefully analyze your APIs for explicit and implicit
data leakage.

pdr.online

IMPLEMENT RATE LIMITING

Many endpoints fail to implement rate limiting, which allows
attackers to launch brute force attacks. Examples include SMS

code prompts, reset tokens, and authentication forms.

Implement rate limiting to minimize the attacker's ability to
abuse these endpoints.

pdr.online

MITIGATE GUESSING ATTACKS

Attackers often abuse unsigned values
to implement guessing attacks.

Mitigation techniques against guessing attacks include
using long random identifiers (e.g., a UUID) or using
signed values that allow the detection of tampering.

Broken function level authorization5

Unrestricted resource consumption4

Broken object property-level authorization3

Broken authentication2

Broken object level authorization1

Unsafe consumption of APIs10

Improper inventory management9

Security misconfiguration8

Server-side request forgery7

Unrestricted access to sensitive business flows6

API Security

“
“

The Android and iOS
API were discovered

to not implement any
authorization checks

while adding or
deleting ‘family

member’ accounts
to/from other

accounts.

https://fortbridge.co.uk/research/mass-account-takeover-yunmai/

?
pdr.online

Why is authorization so hard to get right?

pdr.online

Enforcing role-based access control on controller endpoints in Spring

1
2
3
4

@PreAuthorize("hasRole('FAMILY_OWNER')")
public void addMember(long familyId, FamilyMember member) {
 familyData.addMember(familyId, member);
};

pdr.online

RBAC typically leads to role explosion to express fine-grained permissions

1
2
3
4
5
6

@PreAuthorize("hasRole(FAMILY_OWNER')
 or hasRole('PARENT')
 or hasRole('ADMIN')")
public void addMember(long familyId, FamilyMember member) {
 familyData.addMember(familyId, member);
};

A policy like this is hard to
maintain. Additionally, every
change to the policy requires
code changes to enforce this.

pdr.online

Permission-based security decouples the code from the authorization policy

1
2
3
4

@PreAuthorize("hasPermission('ADD_FAMILY_MEMBER')")
public void addMember(long familyId, FamilyMember member) {
 familyData.addMember(familyId, member);
};

Permissions decouple user
permissions from endpoints.

Permissions are now mapped to
a user (E.g., via roles, groups, …)

?
pdr.online

Hmm, that wasn't so hard?

pdr.online

Adding a family member

1
2

POST /family/1/member HTTP/1.1
{ name: … }

Adding a family member

1
2

POST /family/7/member HTTP/1.1
{ name: … }

This adds a new member
to your family

This adds a new member to
someone else’s family

Permission-based security decouples the code from the authorization policy

1
2
3
4

@PreAuthorize("hasPermission('ADD_FAMILY_MEMBER')")
public void addMember(long familyId, FamilyMember member) {
 familyData.addMember(familyId, member);
};

pdr.online

Object-level access control is often challenging to implement

1
2
3
4
5
6
7
8
9

@PreAuthorize("hasPermission('ADD_FAMILY_MEMBER')")
public void addMember(long familyId, FamilyMember member) {
 Family f = familyData.get(familyId);
 if((user.hasRole("FAMILY_ONWER") || user.hasRole("PARENT")) && !f.isMember(user))) {
 throw new AuthorizationException(":(");
 }

 familyData.addMember(familyId, member);
};

A permission check only
allows authorized users to

access this endpoint

Certain roles require
additional restrictions,

such as being a member
of the family

Policies like these are
impossible to audit for

security

pdr.online

Ask the Policy Engine to
make an authorization

decision

A "centralized" policy results in a clear and auditable authorization policy

1
2
3
4
5
6
7

public void addMember(long familyId, FamilyMember member) {
 Family f = familyData.get(familyId);
 if(policy.checkPermission("ADD_FAMILY_MEMBER"), f, user)) {
 familyData.addMember(familyId, member);
 }
 throw new AuthorizationException(":(");
}

@PhilippeDeRyck

Ask the Policy Engine to
make an authorization

decision

Open Policy Agent

https://www.openpolicyagent.org/

pdr.online

CENTRALIZE COMPLEX AUTHORIZATION LOGIC

Complex authorization logic should not be
scattered throughout the code, but is best defined
in a clear and understandable authorization policy

pdr.online

EMPOWER AUDITABILITY

Simplify the auditing of your authorization policy
by making authorization logic explicit, even when

endpoints have no specific authorization
requirements.

Broken function level authorization5

Unrestricted resource consumption4

Broken object property-level authorization3

Broken authentication2

Broken object level authorization1

Unsafe consumption of APIs10

Improper inventory management9

Security misconfiguration8

Server-side request forgery7

Unrestricted access to sensitive business flows6

API Security

“
“

The server leaks the
‘accessToken’, and
the ‘refreshToken’.
As a result, we can
impersonate the

account.

https://fortbridge.co.uk/research/mass-account-takeover-yunmai/

pdr.online

The API response to retrieve online users

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

[
 {
 "id": 3,
 "name": "John",
 "address": "5 George's Dock, …",
 },
 {
 "id": 6,
 "name": "Jakob",
 "address": "71-75 Shelton Street, …",
 },
 {
 "id": 17,
 "name": "Philippe",
 "address": ”Nieuwe steenweg 123, …",
 }
]

Online users: John, Jakob, Philippe

https://APISecuritySwagShop.com

Welcome to the shop

pdr.online

The Java Spring endpoint returning users

1
2
3
4
5

@RequestMapping(path = "/online/users", method = GET, produces = "application/json")
public ResponseEntity<Object> getOnlineUsers() {
 List<User> users = UserService.getOnlineUsers();
 return new ResponseEntity<Object>(users, HttpStatus.OK);
}

The User data class

1
2
3
4
5
6
7
8
9
10
11

public class User {
 private String id, name, address;
 …
 public String getName() {
 return name;
 }

 public String getAddress() {
 return address;
 }
}

Data fields are automatically
translated to JSON, even when they

are not supposed to be exposed

pdr.online

The Java Spring endpoint returning users

1
2
3
4
5

@RequestMapping(path = "/online/users", method = GET, produces = "application/json")
public ResponseEntity<Object> getOnlineUsers() {
 List<User> users = UserService.getOnlineUsers();
 return new ResponseEntity<Object>(users, HttpStatus.OK);
}

The User data class

1
2
3
4
5
6
7
8
9
10
11
12

public class User {
 private String id, name, address;

 public String getName() {
 return name;
 }

 @JsonIgnore
 public String getAddress() {
 return address;
 }
}

Annotations can hide fields, but this
approach does not really follow the

deny-by-default best practice

pdr.online

The Java Spring endpoint returning users

1
2
3
4
5

@RequestMapping(path = "/online/users", method = GET, produces = "application/json")
public ResponseEntity<Object> getOnlineUsers() {
 List<User> users = UserService.getOnlineUsers();
 return new ResponseEntity<Object>(users.stream().map(PublicUserInfo::new), HttpStatus.OK);
}

The PublicUserInfo DTO class

1
2
3
4
5
6
7
8
9
10
11
12

public class PublicUserInfo {
 private String id, name;

 public PublicUserInfo(User user) {
 this.setId(user.getId());
 this.setName(user.getName());
 }
 …
 public String getName() {
 return name;
 }
}

The DTO class only defines fields that
are supposed to be exposed.

A User object is never directly
exposed to the client.

pdr.online

AVOID SENSITIVE DATA EXPOSURE

Avoid directly returning internal application data, as
this often results in the exposure of sensitive data.

Use strict schemas or DTOs in combination with a well-
defined OpenAPI specification of your API.

Broken function level authorization5

Unrestricted resource consumption4

Broken object property-level authorization3

Broken authentication2

Broken object level authorization1

Unsafe consumption of APIs10

Improper inventory management9

Security misconfiguration8

Server-side request forgery7

Unrestricted access to sensitive business flows6

API Security

pdr.online

The best authorization policy is understandable and auditable1

Analyze your APIs for data leakage and brute force attack vectors2

Perimeter security cannot be your only defense3

KEY TAKEAWAYS

More info and registration: https://secappdev.org

Thank you!

https://pragmaticwebsecurity.com

Reach out to discuss
how I can help you with security

