E

SERVING THE RIGHT RECIPE
FOR APl AUTHENTICATION

https://Pragmatic Web Security.com

Authentication is providing proof that
a party is who they claim to be

Authorization relies on authentication
to decide if an operation is allowed or not

y @PhilippeDeRyck

CLIENT

CLIENT

A client can be a web application,
mobile app, or desktop application

’ @PhilippeDeRyck

When one API calls another, the
caller acts as a client

CLIENT

CLIENT

Clients running a user’s machine
typically authenticate in the name
of the user

’ @PhilippeDeRyck

Service-to-service communication
should rely on client authentication

‘r/shmyfoodporn-ci ossposted by u/supergamer1313 1 hour ago
$1 NYC Pizza Slice

r/FoodPorn - Posted by u/Bra
$1 NYC Pizza Slice

I

i .r/shittyfoodporn Posted by u/howierid 15 hoursago @2 &3 B2 3V 3 B &
16.6k

M This was way cuter when I pictured it in my head

-

k points - 325 comm:

W 3 Comments @8 Give Award Share [} S

= Tickets (Barcelona, Spain) — Fun, Innovative T
Hype

@@ 420 Comments @8 Give Award Share [Save (@ Hide [Report

y @PhilippeDeRyck

| am Dr. Philippe De Ryck

@ Fragmatic Weh Securlty Founder of Pragmatic Web Security

Security for developers

) 4 ExglpDe}’Es Google Developer Expert

AMBASSADOR AuthO Ambassador / Expert

R o G R A M

A Sccure

@) icati]
- D elaoment SecAppDev organizer

| help developers with security

Academic-level security training

@ Hands-on in-depth online courses

Security advisory services

https://pragmaticwebsecurity.com

BASIC CLIENT AUTHENTICATION

’ @PhilippeDeRyck

Verify the secret e

‘ a Send request including the secret Oﬁ

API

, @PhilippeDeRyck

Verify the credentials e

‘ a Send request with HTTP Basic auth OQ

API

€ 7he client includes their credentials on every request

1 GET /restaurants HTTP/1.1
2 Host: restograde.com
x 3 Authorization: Basic bX1DbGl1lbnQ6dGh1Q2xpZW50U2VjcmVo
®

The client credentials are included The value consists of
in the HTTP Authorization header "username:password" in base64

, @PhilippeDeRyck

Verify the secret e

‘ a Send request including the secret OQ

API

0 The secret is an APl key included in every request

1 GET /restaurants HTTP/1.1
2 Host: restograde.com

I 3 X-API-Key: fd2bcd6eab56417f81332c109e0d67eb

The API key is included in a
custom request header

, @PhilippeDeRyck

10

SENDING A SHARED SECRET

 Basic authentication / APl keys

Verify the secret e é

» Secret added by sender, verified by API

» Secret is often hardcoded

* Works well between services

BENEFITS DRAWBACKS
Lightweight mechanism with minimal overhead Secret has to be known by all involved parties
Easy to implement Scalable secret management is challenging
Works well within a single "trust zone" Secret is not linked to the request in any way

y @PhilippeDeRyck 11

Verify the HMAC
using the secret

Generate a request 0
HMAC with secret

a Send request with the HMAC

CLIENT 0 Response

€© 7he client authenticates the request with an HMAC

1 GET /restaurants HTTP/1.1
2 Host: restograde.com

I 3 X-Req-Sig: 5d672d79c¢15b13162d927..e06b5924a612b5d7
?
The HMAC is included in a The HMAC is based on the
custom request header request and the secret value

, @PhilippeDeRyck

INTERMEZZO: HMACS

A secret key to ensure
the HMAC is unique

5d672d79c15b1...e06b5924

I

The data to protect
with the HMAC

’ @PhilippeDeRyck

A cryptographic
HMAC function (e.g.
HMAC-SHA256)

The HMAC calculated
on the data with the
secret

13

INTERMEZZO: HMACS
P |

¥
‘ GET /... HTTP/1.1 QQ 5d672d79c15b1...e06b5924
HMAC

& 1

‘ GET /... HTTP/1.1
API HMAC
5d672d79c15bl...e06b5924
The data or the secret
are different
, @PhilippeDeRyck

5d672d79c15b1...e06b5924

The input to the HMAC
is valid, so it was
generated with the
same data and secret

Generate a request 0
HMAC with secret

Verify the HMAC
using the secret

Q Signing AWS requests with Signature Version 4

GET /?Action=ListUsers&Version=2010-05-08 HTTP/1.1
Host: iam.amazonaws.com
X—-amz—-date: 20150830T123600Z

SignedHeaders=content-type;host;x—-amz-date,

OuUlhk, WDN B

Signature=5d672d79c15b13162d9279b0855cfba6789a8edb4c82c400e06b5924a6f2b5d7

Authorization: AWS4-HMAC-SHA256 Credential=AKIDEXAMPLE/20150830/us-east-1/iam/aws4_request,

, @PhilippeDeRyck

The Authorization header also
includes the metdata about the HMAC

15

Generate a JWT and

Verify the JWT signature e
sign it with the secret

using the secret

‘ a Send request including a signed JWT OQ

API

€© 7he client authenticates the request with a JWT

1 GET /restaurants HTTP/1.1
2 Host: restograde.com

I 3 X-Req-IWT: eyJhbGci0iJIUzIINiIsInR5cCI6IkpXVCI9.ey..

The JWT is included in a
custom request header

, @PhilippeDeRyck

16

INTERMEZZO: JWTS

eyJhbGciO0iJIUzZITNiIsInR5cCI6IkpXVCJ9. ey
zdWIiOiIxMjMONTY30DkwIiwibmFtZSI6I1BoaWx
pcHB1IER1IFJS5Y2silCJyb2xlcyI6InVzZXIgcmV
zdGF1cmFudG93bmVyIiwiaWFOIjoxNTE2MjMSMDI
yfQ.KPjhyE90i83uehgwbLm_0yAZzRuJhcUgXETD
2AIrF2A

y @PhilippeDeRyck

EnCOded PASTE A TOKEN HERE DeCOded EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

eyJhbGciO0iJIUzITNiIsInR5cCI6IkpXVCJ9.eyJ

zdWIiOiIXxMjMONTY30DkwIiwibmFtZSI6I1BoaWx {"1" -
a : ,
pcHB1IER1IFJ5Y2silLCJyb2x1lcyI6InVzZXIgcmV .%ygg.uwp
zdGF1cmFudG93bmVyIiwiaWFOI joxNTE2MjM5MDI }
yfQ.KPjhyE90i83uehgwbLm_0yAZzRuJhcUgXETD
PAYLOAD: DATA

2AIrF2A

{

"sub": "1234567890",

. "name": "Philippe De Ryck",
Contains a "roles": "user restaurantowner",
Base64-encoded . —® jat": 1516239022
set of claims \

VERIFY SIGNATURE

HMACSHA256 (
Integrity'prOtECtEd base64UrlEncode(header) + "." +
With a signature ° base64UrlEncode(payload),
SuperSecretHMACKey

) O secret base64 encoded

ADDING AN HMAC IN THE REQUEST

* HTTP Signatures / Custom JWTs

« HMAC s are calculated on a piece of

data using a shared secret

« HMAC s ensure the integrity of the data

BENEFITS

HMACs provide data authenticity and integrity
Relatively easy to implement

Signature can be uniquely tied to a specific request

, @PhilippeDeRyck

Generate a request o & Verify the HMAC e &

HMAC with secret using the secret

DRAWBACKS

Secret has to be known by all involved parties
Scalable secret management is challenging

HMAC verification requires (application) code

19

ADVANCED CLIENT AUTHENTICATION

’ @PhilippeDeRyck

Generate a signature
using the private key

, @PhilippeDeRyck

Verify the signature
using the public key

‘ a Send request along W|th the signature

The signature acts as a proof-of-
possession mechanism,
demonstrating that the client
possesses the private key

o

API

21

INTERMEZZO: DIGITAL SIGNATURES

H—

GET /... HTTP/1.1

A private key belonging
to the client

e06b5924...5d672d79¢c15b1

The data to protect
with the signature

’ @PhilippeDeRyck

A cryptographic
signing function
(e.g. RSA)

The signature

calculated on the data
with the private key

22

INTERMEZZO: DIGITAL SIGNATURES

‘ 6 e06b5924...5d672d79c15b1

. The public key is uniquely

1 linked to the private key

OQ Oﬁ
3 GET /... HTTP/1.1 e,

API VERIFY

€06b5924...5d672d79c15b1 The data is different
or the wrong signing

key has been used

The data is the same and the
signature is created with the
expected private key

, @PhilippeDeRyck

Generate a
request signature

Verify the signature e
using the public key

‘ a Send request along with the signature OQ

CLIENT © Response API

Q Signing requests with the HTTP Signature specification

Signature:

UG &~ WN B

GET /restaurants HTTP/1.1
Host: restograde.com
Date: Thu, 29 Oct 2020 07:28:00 GMT

keyId="clientPubKey", algorithm="rsa-sha256", created=1402170695, expires=1402170995,

headers="host date", signature="T113tWH2cSP31nfuvc3nVaHQ6IAu9YLEXgTXnlWbgKtBTa..gd9rGnCHtAg==

, @PhilippeDeRyck

The Signature header also includes the metdata
about the used key and the signature contents

24

Sign a JWT with
the private key

Verify the JWT signature e
using the public key

‘ a Send request along with the JWT OQ
ro)

CLIENT 0 Response

API

€© 7he client authenticates the request with a JWT

1 GET /restaurants HTTP/1.1
2 Host: restograde.com

Bearer eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCI9.ey..

‘ 3 Authorization:

The Authorization header
includes a client-generated JWT

, @PhilippeDeRyck

The client can include arbitrary
request metadata in the JWT

25

Internet Engineering Task Force (IETF) M. Jones

Request for Comments: 7523 Microsoft
Category: Standards Track B. Campbell
ISSN: 2070-1721 Ping Identity
C. Mortimore

Salesforce

May 2015

JSON Web Token (JWT) Profile
for OAuth 2.0 Client Authentication and Authorization Grants

Abstract

This specification defines the use of a JSON Web Token (JWT) Bearer
Token as a means for requesting an OAuth 2.0 access token as well as
for client authentication.

’ @PhilippeDeRyck

ASYMMETRIC REQUEST SIGNATURES

* HTTP Signatures / Custom JWTs
* Created with the sender’s private key
» Verified with the sender’s public key

» Signatures ensure the validity of the data

BENEFITS

Only the public key needs to be shared (no secrets)
Works well when one client relies on multiple APIs

Cryptographic keys can be stored securely

, @PhilippeDeRyck

Verify the signature o

using the public key
: 3

using the private key

6 Send request along with the signature

Generate a signature o w

CLIENT o Response

DRAWBACKS

Key management / trustworthiness is challenging
Only provides authenticity (and data integrity)

Integrity protection only applies to the signed data

27

’ @PhilippeDeRyck

API public Client public
key/cert key/cert
Client private API private
key key

0 Establish a mutual TLS (mTLS) connection OQ

|

My

API

A communication channel
providing confidentiality,
integrity, and authenticity

Verify that the server
certificate is trusted

Verify that the client
certificate is trusted

28

USING AN MTLS CONNECTION

» Client and server have a TLS certificate

* During the handshake, client and server

verify trustworthiness of certificates

 Recommended for native applications

BENEFITS

mTLS offers confidentiality, integrity, and authenticity
Supported in most languages / frameworks

Works with self-signed certificates if they are trusted

y @PhilippeDeRyck

o Establish a mutual TLS (mTLS) connection OQ

API

DRAWBACKS

mTLS does not work well with browser-based apps
Certificate and key management (PKI) is challenging

No further data besides the info from the certificate

29

RFC 8705

OAuth 2.0 Mutual-TLS Client Authentication and Certificate-
Bound Access Tokens

Abstract

This document describes OAuth client authentication and certificate-bound access and refresh tokens using
mutual Transport Layer Security (TLS) authentication with X.509 certificates. OAuth clients are provided a
mechanism for authentication to the authorization server using mutual TLS, based on either self-signed
certificates or public key infrastructure (PKI). OAuth authorization servers are provided a mechanism for
binding access tokens to a client's mutual-TLS certificate, and OAuth protected resources are provided a
method for ensuring that such an access token presented to it was issued to the client presenting the token.

y @PhilippeDeRyck

Amazon AP| Gateway now supports mutual TLS
authentication

Posted On: Sep 17, 2020

Amazon API| Gateway now supports mutual TLS (mTLS) authentication. Customers can now enable mTLS on custom domain names for
regional REST and HTTP APIs at no additional cost. Mutual TLS enhances the security of your APl and helps protect your data from
attacks such as client spoofing or man-in-the middle attacks.

Historically, APl Gateway has supported one-way TLS to ensure that API clients are able to verify APl Gateway's identity by validating
its public certificate. With this new feature, customers can now configure a custom domain name to enforce two-way TLS or mTLS
which enables certificate-based authentication both ways: client-to-server and server-to-client. This helps you comply with security
requirements for your Open Banking solution or easily authenticate devices in an |IOT solution.

This new feature is generally available in all regions where API Gateway is available. To learn more you can read the documentation. For
more information about Amazon API Gateway, visit our product page.

, @PhilippeDeRyck https://aws.amazon.com/about-aws/whats-new/2020/09/amazon-api-gateway-supports-mutual-tis-authentication/

ISTIO SUPPORTS AUTOMATIC MTLS CONFIGURATIONS

oIDC + TLS / @ Service A @ Service B ocal Auths
mTLS JWT +TLS/
l HTTP gRPC, TCP miLs
I’ —
O Ingress Proxy @ > O proxyoJ w = O proxy 9=}] > O Egress Proxy
e £ | £
Perimeter mTLS *’ - mTLS /‘q mTLS Perimeter
security | N / security
policies Routing AN /7 | policies
+ - Cert / | Reporting
Policy I Issuance \ /
N/ I
I v/ \
@ Pilot @ Citadel @Mixer
—» Dataflow e ——— Security policies can be
— — % Control + metrics flow © _g’ 'é S’ '% _g’ implemented at different
o o Q = Q .
Istio Control Plane - é levels of ar anular ity -

Service, Namespace, Mesh.

K8S API Server

’ @PhilippeDeRyck

USER AUTHENTICATION

’ @PhilippeDeRyck

AUTHENTICATION

USER SERVICE

Authenticate with
user credentials

Provide user credentials

to the application e Respond with a colokie to

track the authentii:ated state

I
I
| Oﬁ
I
ﬂ Use authentication state

I API) for authorization
[l

r St

The frontend web application i i i i
. Cookies are associated with a domain, so
acts as the client . ..
these services should be running in the same
domain (e.g., app.restograde.com)

’ @PhilippeDeRyck

34

COOKIE-BASED “AUTHENTICATION”

 The user authenticates once 9
Authenticate with e

user credentials

* Authentication state is tracked for the Provide user wedentials @ P

track the authenti!:ated state

€

API

duration of a “session”

for authorization

|
B Use authentication state
|
|

* Supports both stateful and stateless

backend scenarios
BENEFITS DRAWBACKS
Cookies are handled automatically by the browser Cookies only work well in browser-based applications
Supported by most backend frameworks Cookies only work well within a single domain
Modern browsers support advanced cookie security Suggesting the use of cookies makes you look uncool

, @PhilippeDeRyck 35

USER

Provide user credentials
to the application

AUTHENTICATION
SERVICE

Authenticate with
user credentials

e Respond with a token that
represents the authenticated state

o

e Use token information

API for authorization

The client can be a frontend
web app, a backend web
app, or a native application

© 7he client includes the token in each request

1 GET /restaurants HTTP/1.1

2 Host: restograde.com

’ @PhilippeDeRyck

Authorization: Bearer eyJhbGci0iJIUzIINiIsInR5cCI6IkpXVCJI9.ey..

36

TOKEN-BASED “AUTHENTICATION”

 The user authenticates once 9
Authenticate with 0

AUTHENTICATION
SERVICE

user credentials

* Authentication state is represented by T e the appcation © @ "o awentht
a token (typically a JWT) 5
e The client sends the token on every © response
request to the API
BENEFITS DRAWBACKS
Works well for all clients, including JS applications Typically requires custom backend code to handle
Works well within a single application Long-lived tokens are dangerous
Suggesting the use of tokens makes you look cool Token security in browser-based applications is hard

, @PhilippeDeRyck 37

e Request user authentication

e Authenticate with user credentials

USER

Start an OAuth 2.0 flow
to obtain a token

AUTHORIZATION
SERVER

o Respond with an access token

g

The client can be a frontend
web app, a backend web
app, or a native application

’ @PhilippeDeRyck

API

Use token information
for authorization

38

eyJhbGci0iJSUzITNiIsInR5cCI6IkpXVCIsImtp
ZCI6IKSUVKJPVFUzTXpCQk9FVXdO0emhCUTBWRO1r
UTBRVVU1TUVRZeFFVVX1PVU5FUVVVeE5qRX1NdyJ9
.eyJpc3MiOiJodHRwczovL3NOcy5yZXNOb2dyYWR
1LmNvbS8iLCJzdWIiOiJhdXROMHW1ZWI5SMTZjMjU
4YmRiNTBiZjIwMzY2YzYilLCJhdWQiOlsiaHROCcHM
6Ly9hcGkucmVzdGOncmFkZS5jb20ilLCJodHRwczo
vL3J1c3RvZ3JhZGUuZXUuYXVOaDAuY29tL3VzZXJ
pbmZvI10sImlhdCI6MTU40Tc3NTA3IMiwiZXhwIjo
XNTg50DYXNDcyLCJhenAi0iJPTEtObjM40VNVSW1
1ZkVA4Z1JHMVJpbEXTZ2RZeHdFcCIsInNjb3B1lIjo
ib3BlbmlkIHBYyb2ZpbGUgZW1haWwgb2ZmbGluZV9
hY2N1c3MifQ.XzJOXtTXO0GOSbCFvp4yZGJzh7XhM
mOmI2XxtjWd1lODz_siI-u8h11elcr8LwX6-
hL26Q0WBeStzBzmm1FM_tS7MxuKkYx8Q1TWOURPe
mbVKZOhNi8kN-
1j0pycOuzve7Jib5vexmkPwgpcVDFACgP85_ONYe
4zXHKxCA5_8VOnB5cRCDSKNMTFzGJCT9ipCcNXaV
GdksojYGgQzezjpzzzwrtPEkiyFLFtDPZAl1OMl1eF
30FAOCBKOUKuUNjJ_cSBbUsaIwfvKOWH47AwFrRn_
TxL4ST1P3j3b1GgBm8tAqXysY84VZuo
rSg3zrZj1PnogPD4mb0Xds20xafCr9wR4WTQ

HEADER: ALGORITHM & TOKEN TYPE

"alg"”: "RS256",
Iltypll : "JWT“ ,
"kid":

"NTVBOTU3MzBBOEUwWNzhBQBVGMkQOQUUS5QTYXxQUUYOUNEQUUXNjEyMw"
}

PAYLOAD: DATA

{

"iss": "https://sts.restograde.com/",
"sub": "auth@|5eb916c258bdb50bf20366c6",
Ilaudll: [

"https://api.restograde.com",
"https://restograde.eu.auth@.com/userinfo”
1,
"iat": 1589775072,
"exp": 1589861472,
"azp": "OLKNn389SUImufExgRGTRilLSgdYxwEp",
"scope": "openid profile email offline_access"”

HEADER: ALGORITHM & TOKEN TYPE

"alg": "RS256",

"typ": "JWT",

"kid":
"NTVBOTU3MzBBOEUwWNzhBQBVGMkQOQUUS5QTYXxQUUYOUNEQUUXNjEyMw"

}

PAYLOAD: DATA

The sub claim represents the { o)
user’s unique identifier iss": "https://sts.restograde.com/",
® "sub": "auth®|5eb916c258bdb50bf20366c6",
. naudn . [

The aud claim represents the

. "https://api.restograde.com”,
target APIs for this access token

"https://restograde.eu.auth@.com/userinfo”
1,
"iat": 1589775072,
® 'exp": 1589861472,
® "azp": "OLKNn389SUImufExgRGTRilLSgdYxwEp",
"scope": "openid profile email offline_access"”

The exp claim represents the
lifetime of the token

The azp claim represents the client
to which this token was issued

, @PhilippeDeRyck

USING OAUTH 2.0 ACCESS TOKENS

e Request user authentication

AUTHORIZATION

O Authenticate with user credentials
SERVER

 OAuth 2.0 allows clients to access APIs on USER

behalf of users

Start an OAuth 2.0 flow
to obtain a token

o Respond with an access token

e Send request along with the token O
Q o Use token information

* OAuth 2.0 supports access & refresh tokens

* OAuth 2.0 offers uniform support for different AT Y APl for authorization
types of clients
BENEFITS DRAWBACKS
Uniform authorization framework for various clients Complex to manage in a simple architecture
Well-defined threat model / security considerations User authentication typically involves the browser
Ecosystem of libraries to simplify implementation OAuth 2.0 is an extensive but complicated framework

, @PhilippeDeRyck 41

This online course condenses dozens of confusing specs

into a crystal-clear academic-level learning experience

[NN 1 Mastering OAuth 2.0 and Openll X =+
d C ® R & courses. pragmaticwebsecurity.com/bundles/mastering-oauth-oidc

@ Pragmatic Web Security SIGN IN

Mastering OAuth 2.0 and OpenlID Connect VIRTUAL OWASP

25% discount

Use coupon code

Your shortcut towards understanding OAuth 2.0 and OpenID Connect

Offer expires Feb 25th, 2021

OAuth 2.0 and OpenlID Connect are crucial for securing web applications, mobile applications, APls, and
microservices. Unfortunately, getting a good grip on the purpose and use cases for these technologies
is insanely difficult. As a result, many implementations use incorrect configurations or contain security

vulnerabilities.

W @PhilippeDeRyck https://courses.pragmaticwebsecurity.com

Sending a shared secret
Adding an HMAC in the request

Asymmetric request signhatures

Using an mTLS connection

Cookie-based “authentication”

Token-based “authentication”

Using OAuth 2.0 access tokens

y @PhilippeDeRyck

Simple client authentication mechanism that only
works well in a single trust zone

Simple client authentication mechanism that does
not rely on shared secrets

to establish a secure channel

Mainly useful within a single app. Not recommended
without revocable refresh tokens/sessions

Complex but extensive authorization framework.

43

USEFUL REFERENCES

AWS request signing: https://docs.aws.amazon.com/general/latest/gr/sigv4 signing.html

HTTP Signatures: https://tools.ietf.org/html/draft-ietf-httpbis-message-signatures-00

Client authentication with JWT in OAuth 2.0: https://tools.ietf.org/html|/rfc7523

Client authentication with mTLS in OAuth 2.0: https://tools.ietf.org/html/rfc8705

Istio security architecture: https://istio.io/v1.3/docs/concepts/security/

Additional talks on API security: https://pragmaticwebsecurity.com/talks.html

Online courses: https://pragmaticwebsecurity.com/courses.htm|

y @PhilippeDeRyck

44

https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://tools.ietf.org/html/draft-ietf-httpbis-message-signatures-00
https://tools.ietf.org/html/rfc7523
https://tools.ietf.org/html/rfc8705
https://istio.io/v1.3/docs/concepts/security/
https://pragmaticwebsecurity.com/talks.html
https://pragmaticwebsecurity.com/courses.html

Thank you for watching!

Connect on social media for more
in-depth security content

@PhilippeDeRyck /in/PhilippeDeRyck

