
https://Pragmatic Web Security.com

DR. PHILIPPE DE RYCK

SERVING THE RIGHT RECIPE
FOR API AUTHENTICATION

@PhilippeDeRyck

Authentication is providing proof that
a party is who they claim to be

Authorization relies on authentication
to decide if an operation is allowed or not

@PhilippeDeRyck 3

A client can be a web application,
mobile app, or desktop application

When one API calls another, the
caller acts as a client

@PhilippeDeRyck 4

Clients running a user’s machine
typically authenticate in the name

of the user Service-to-service communication
should rely on client authentication

@PhilippeDeRyck 5

@PhilippeDeRyck

I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

Auth0 Ambassador / Expert

SecAppDev organizer

https://pragmaticwebsecurity.com

I help developers with security

Academic-level security training

Hands-on in-depth online courses

Security advisory services

@PhilippeDeRyck

BASIC CLIENT AUTHENTICATION

@PhilippeDeRyck 8

1 Send request including the secret

3 Response

SECRET
SECRET

2Verify the secret

@PhilippeDeRyck 9

1 Send request with HTTP Basic auth

3 Response

SECRET
SECRET

2Verify the credentials

The client includes their credentials on every request

1
2
3

GET /restaurants HTTP/1.1
Host: restograde.com
Authorization: Basic bXlDbGllbnQ6dGhlQ2xpZW50U2VjcmV0

1

The client credentials are included
in the HTTP Authorization header

The value consists of
"username:password" in base64

@PhilippeDeRyck 10

1 Send request including the secret

3 Response

SECRET
SECRET

2Verify the secret

The secret is an API key included in every request

1
2
3

GET /restaurants HTTP/1.1
Host: restograde.com
X-API-Key: fd2bcd6eab56417f81332c109e0d67eb

1

The API key is included in a
custom request header

@PhilippeDeRyck

• Basic authentication / API keys

• Secret added by sender, verified by API

• Secret is often hardcoded

• Works well between services

11

BENEFITS DRAWBACKS
Lightweight mechanism with minimal overhead

Easy to implement

Works well within a single "trust zone"

Secret has to be known by all involved parties

Scalable secret management is challenging

Secret is not linked to the request in any way

SENDING A SHARED SECRET

@PhilippeDeRyck 12

2 Send request with the HMAC

4 Response

SECRET
SECRET

3Verify the HMAC
using the secret

The client authenticates the request with an HMAC

1
2
3

GET /restaurants HTTP/1.1
Host: restograde.com
X-Req-Sig: 5d672d79c15b13162d927…e06b5924a6f2b5d7

2

The HMAC is included in a
custom request header

1Generate a request
HMAC with secret

The HMAC is based on the
request and the secret value

@PhilippeDeRyck

GET /… HTTP/1.1

INTERMEZZO: HMACS

13

SEC
RET

GET /… HTTP/1.1

The data to protect
with the HMAC

A cryptographic
HMAC function (e.g.

HMAC-SHA256)

The HMAC calculated
on the data with the

secret

A secret key to ensure
the HMAC is unique

5d672d79c15b1…e06b59245d672d79c15b1…e06b5924

@PhilippeDeRyck

INTERMEZZO: HMACS

14

SEC
RET

GET /… HTTP/1.1 5d672d79c15b1…e06b5924

SEC
RET

GET /… HTTP/1.1

5d672d79c15b1…e06b5924 The input to the HMAC
is valid, so it was

generated with the
same data and secret

The data or the secret
are different

5d672d79c15b1…e06b5924

@PhilippeDeRyck 15

2 Send request with the HMAC

4 Response

SECRET
SECRET

3Verify the HMAC
using the secret

Signing AWS requests with Signature Version 4

1
2
3
4
5
6

GET /?Action=ListUsers&Version=2010-05-08 HTTP/1.1
Host: iam.amazonaws.com
X-amz-date: 20150830T123600Z
Authorization: AWS4-HMAC-SHA256 Credential=AKIDEXAMPLE/20150830/us-east-1/iam/aws4_request,
SignedHeaders=content-type;host;x-amz-date,
Signature=5d672d79c15b13162d9279b0855cfba6789a8edb4c82c400e06b5924a6f2b5d7

2

The Authorization header also
includes the metdata about the HMAC

1Generate a request
HMAC with secret

@PhilippeDeRyck 16

2 Send request including a signed JWT

4 Response

SECRET
SECRET

3Verify the JWT signature
using the secret

The client authenticates the request with a JWT

1
2
3

GET /restaurants HTTP/1.1
Host: restograde.com
X-Req-JWT: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.ey…

2

The JWT is included in a
custom request header

1Generate a JWT and
sign it with the secret

@PhilippeDeRyck

INTERMEZZO: JWTS

17

@PhilippeDeRyck 18

Base64-encoded Contains a
set of claims

Integrity-protected
with a signature

@PhilippeDeRyck

• HTTP Signatures / Custom JWTs

• HMACs are calculated on a piece of

data using a shared secret

• HMACs ensure the integrity of the data

19

BENEFITS DRAWBACKS
HMACs provide data authenticity and integrity

Relatively easy to implement

Signature can be uniquely tied to a specific request

Secret has to be known by all involved parties

Scalable secret management is challenging

HMAC verification requires (application) code

ADDING AN HMAC IN THE REQUEST

@PhilippeDeRyck

ADVANCED CLIENT AUTHENTICATION

@PhilippeDeRyck 21

2 Send request along with the signature

4 Response

3Verify the signature
using the public key

PRIVATE
PUBLIC

1Generate a signature
using the private key

The signature acts as a proof-of-
possession mechanism,

demonstrating that the client
possesses the private key

@PhilippeDeRyck

INTERMEZZO: DIGITAL SIGNATURES

22

GET /… HTTP/1.1 e06b5924…5d672d79c15b1GET /… HTTP/1.1 e06b5924…5d672d79c15b1

PRI
VAT

E

The data to protect
with the signature

A cryptographic
signing function

(e.g. RSA)

The signature
calculated on the data

with the private key

A private key belonging
to the client

@PhilippeDeRyck

INTERMEZZO: DIGITAL SIGNATURES

23

GET /… HTTP/1.1 e06b5924…5d672d79c15b1

GET /… HTTP/1.1

e06b5924…5d672d79c15b1 The data is the same and the
signature is created with the

expected private key

The data is different
or the wrong signing

key has been used

PRI
VAT

E

PUB
LIC The public key is uniquely

linked to the private key

@PhilippeDeRyck 24

2 Send request along with the signature

4 Response

3Verify the signature
using the public key

PRIVATE
PUBLIC

1Generate a
request signature

Signing requests with the HTTP Signature specification

1
2
3
4
5

GET /restaurants HTTP/1.1
Host: restograde.com
Date: Thu, 29 Oct 2020 07:28:00 GMT
Signature: keyId=”clientPubKey", algorithm="rsa-sha256", created=1402170695, expires=1402170995,
headers="host date", signature="T1l3tWH2cSP31nfuvc3nVaHQ6IAu9YLEXgTXnlWbgKtBTa…gd9rGnCHtAg=="

2

The Signature header also includes the metdata
about the used key and the signature contents

@PhilippeDeRyck 25

2 Send request along with the JWT

4 Response

3Verify the JWT signature
using the public key

PRIVATE
PUBLIC

1Sign a JWT with
the private key

The client authenticates the request with a JWT

1
2
3

GET /restaurants HTTP/1.1
Host: restograde.com
Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.ey…

2

The Authorization header
includes a client-generated JWT

The client can include arbitrary
request metadata in the JWT

@PhilippeDeRyck https://www.rfc-editor.org/rfc/rfc7523.html

@PhilippeDeRyck

• HTTP Signatures / Custom JWTs

• Created with the sender’s private key

• Verified with the sender’s public key

• Signatures ensure the validity of the data

27

BENEFITS DRAWBACKS
Only the public key needs to be shared (no secrets)

Works well when one client relies on multiple APIs

Cryptographic keys can be stored securely

Key management / trustworthiness is challenging

Only provides authenticity (and data integrity)

Integrity protection only applies to the signed data

ASYMMETRIC REQUEST SIGNATURES

@PhilippeDeRyck 28

1 Establish a mutual TLS (mTLS) connection

PRIVATE

PUBLIC

Verify that the server
certificate is trusted

Verify that the client
certificate is trusted

A communication channel
providing confidentiality,
integrity, and authenticity

PRIVATE

PUBLIC API public
key/cert

Client public
key/cert

Client private
key

API private
key

@PhilippeDeRyck

• Client and server have a TLS certificate

• During the handshake, client and server

verify trustworthiness of certificates

• Recommended for native applications

29

BENEFITS DRAWBACKS
mTLS offers confidentiality, integrity, and authenticity

Supported in most languages / frameworks

Works with self-signed certificates if they are trusted

mTLS does not work well with browser-based apps

Certificate and key management (PKI) is challenging

No further data besides the info from the certificate

USING AN MTLS CONNECTION

@PhilippeDeRyck https://www.rfc-editor.org/rfc/rfc8705.html

@PhilippeDeRyck https://aws.amazon.com/about-aws/whats-new/2020/09/amazon-api-gateway-supports-mutual-tls-authentication/

@PhilippeDeRyck

ISTIO SUPPORTS AUTOMATIC MTLS CONFIGURATIONS

32

@PhilippeDeRyck

USER AUTHENTICATION

@PhilippeDeRyck 34

3 Respond with a cookie to
track the authenticated state

1Provide user credentials
to the application

2Authenticate with
user credentials

4 Send request along with the cookie

6 Response

5 Use authentication state
for authorization

Cookies are associated with a domain, so
these services should be running in the same

domain (e.g., app.restograde.com)

The frontend web application
acts as the client

@PhilippeDeRyck

• The user authenticates once

• Authentication state is tracked for the

duration of a “session”

• Supports both stateful and stateless

backend scenarios

35

BENEFITS DRAWBACKS
Cookies are handled automatically by the browser

Supported by most backend frameworks

Modern browsers support advanced cookie security

Cookies only work well in browser-based applications

Cookies only work well within a single domain

Suggesting the use of cookies makes you look uncool

COOKIE-BASED “AUTHENTICATION”

@PhilippeDeRyck 36

3 Respond with a token that
represents the authenticated state

1Provide user credentials
to the application

2Authenticate with
user credentials

4 Send request along with the token

6 Response

5 Use token information
for authorization

The client can be a frontend
web app, a backend web

app, or a native application

The client includes the token in each request

1
2
3

GET /restaurants HTTP/1.1
Host: restograde.com
Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.ey…

4

@PhilippeDeRyck

• The user authenticates once

• Authentication state is represented by

a token (typically a JWT)

• The client sends the token on every

request to the API

37

BENEFITS DRAWBACKS
Works well for all clients, including JS applications

Works well within a single application

Suggesting the use of tokens makes you look cool

Typically requires custom backend code to handle

Long-lived tokens are dangerous

Token security in browser-based applications is hard

TOKEN-BASED “AUTHENTICATION”

@PhilippeDeRyck 38

4 Respond with an access token

1Start an OAuth 2.0 flow
to obtain a token

5 Send request along with the token

7 Response

6 Use token information
for authorization

The client can be a frontend
web app, a backend web

app, or a native application

3 Authenticate with user credentials

2 Request user authentication

@PhilippeDeRyck

@PhilippeDeRyck

The sub claim represents the
user’s unique identifier

The aud claim represents the
target APIs for this access token

The azp claim represents the client
to which this token was issued

The exp claim represents the
lifetime of the token

@PhilippeDeRyck

• OAuth 2.0 allows clients to access APIs on

behalf of users

• OAuth 2.0 supports access & refresh tokens

• OAuth 2.0 offers uniform support for different

types of clients

41

BENEFITS DRAWBACKS
Uniform authorization framework for various clients

Well-defined threat model / security considerations

Ecosystem of libraries to simplify implementation

Complex to manage in a simple architecture

User authentication typically involves the browser

OAuth 2.0 is an extensive but complicated framework

USING OAUTH 2.0 ACCESS TOKENS

@PhilippeDeRyck

This online course condenses dozens of confusing specs
into a crystal-clear academic-level learning experience

https://courses.pragmaticwebsecurity.com

25% discount

Offer expires Feb 25th, 2021

VIRTUAL_OWASP

Use coupon code

@PhilippeDeRyck 43

Asymmetric request signatures Simple client authentication mechanism that does
not rely on shared secrets

Using an mTLS connection Recommended for service-to-service
communication to establish a secure channel

Sending a shared secret
Adding an HMAC in the request

Simple client authentication mechanism that only
works well in a single trust zone

Cookie-based “authentication” Recommended to track authentication state
within a single web application architecture

Token-based “authentication” Mainly useful within a single app. Not recommended
without revocable refresh tokens/sessions

Using OAuth 2.0 access tokens Complex but extensive authorization framework.
Recommended to support multiple clients and APIs

@PhilippeDeRyck

USEFUL REFERENCES

• AWS request signing: https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

• HTTP Signatures: https://tools.ietf.org/html/draft-ietf-httpbis-message-signatures-00

• Client authentication with JWT in OAuth 2.0: https://tools.ietf.org/html/rfc7523

• Client authentication with mTLS in OAuth 2.0: https://tools.ietf.org/html/rfc8705

• Istio security architecture: https://istio.io/v1.3/docs/concepts/security/

• Additional talks on API security: https://pragmaticwebsecurity.com/talks.html

• Online courses: https://pragmaticwebsecurity.com/courses.html

44

https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://tools.ietf.org/html/draft-ietf-httpbis-message-signatures-00
https://tools.ietf.org/html/rfc7523
https://tools.ietf.org/html/rfc8705
https://istio.io/v1.3/docs/concepts/security/
https://pragmaticwebsecurity.com/talks.html
https://pragmaticwebsecurity.com/courses.html

Thank you for watching!
Connect on social media for more

in-depth security content

@PhilippeDeRyck /in/PhilippeDeRyck

