
https://Pragmatic Web Security.com

DR. PHILIPPE DE RYCK

RECENT EVOLUTIONS IN THE OAUTH 2.0
AND OPENID CONNECT LANDSCAPE

@PhilippeDeRyck 2

Pragmatic Web Security

High-quality security training for developers and managers

- Deep understanding of the web security landscape

- Google Developer Expert (not employed by Google)

DR. PHILIPPE DE RYCK

Custom courses covering web security, API security, Angular security, …

- Course curator of the SecAppDev course
(https://secappdev.org)

@PHILIPPEDERYCK

HTTPS://PRAGMATICWEBSECURITY.COM

Consulting services on security, Oauth 2.0, OpenID Connect, …

@PhilippeDeRyck 3

User authentication

Read & write data

@PhilippeDeRyck 4

User authentication

Read & write data

@PhilippeDeRyck 5

User authentication

Read & write data

@PhilippeDeRyck 6

User authentication

Read & write data

OpenID Connect

OAuth 2.0

@PhilippeDeRyck 7

User authentication

Read & write data

OpenID Connect

OAuth 2.0

Read data

OAuth 2.0

@PhilippeDeRyck 8

User authentication

Read & write data

Results in an identity
token and access token

Uses an access
token

Read data

Uses an access
token

@PhilippeDeRyck 9

OAUTH 2.0 AND OPENID CONNECT

OpenID Connect provides user authentication

OAuth 2.0 allows a client to access resources on behalf of the user

Modern applications use a combination of both protocols

@PhilippeDeRyck

THE OIDC HYBRID FLOW

10

5 Request client authorization

3 Authenticate yourself

4 Login credentials

6 Authorize client

1 Request access

8 Authorization code
and identity token

7
Redirect with
authorization code
and identity token

2Redirect for
authentication

11 Access token / refresh token10Authorization code
with client credentials

12 Access resource

13 Protected resource
9Authenticate user with identity token

@PhilippeDeRyck

THE REFRESH TOKEN FLOW

11

2 Access token & refresh token1Refresh token
with client credentials

3 Access resource

4 Protected resource

@PhilippeDeRyck

THE OIDC HYBRID FLOW

• Clients are backend applications running in a "secure" environment

• The hybrid flow returns an identity token, access token and refresh token
• Identity tokens are issued through the frontchannel, along with an authorization code
• The authorization code can be exchanged for an access token and refresh token
• Using the authorization code requires client authentication

• Refresh tokens allow the client to obtain a new access token
• Using a refresh token requires client authentication

12

“ “
The hackers were able to steal some of our Facebook

and Twitter access tokens from our users.

13

@PhilippeDeRyck

THE DANGER OF BEARER TOKENS

14

5 Request client authorization

3 Authenticate yourself

4 Login credentials

6 Authorize client

1 Request access

8 Authorization code
and identity token

7
Redirect with
authorization code
and identity token

2Redirect for
authentication

11 Access token / refresh token10Authorization code
with client credentials

12 Access resource

13 Protected resource
9Authenticate user with identity token

Access tokens are bearer
tokens, allowing immediate

abuse upon theft

@PhilippeDeRyck

BINDING TOKENS TO TLS CERTIFICATES

15

5 Request client authorization

3 Authenticate yourself

4 Login credentials

6 Authorize client

1 Request access

8 Authorization code
and identity token

7
Redirect with
authorization code
and identity token

2Redirect for
authentication

11 Access token bound to the TLS certificate /
refresh token10Authorization code

with mTLS

12 Access resource
with mTLS

13 Protected resource
9Authenticate user with identity token

@PhilippeDeRyck 16

{

"sub": "jdoe@example.com",
"aud": "https://api.example.com",
"azp": "RandomClientID",
"iss": "https://authorizationserver.example.com/",
"exp": 1419356238,
"iat": 1419350238,
"scope": "read write",
"jti": "405b4d4e-8501-4e1a-a138-ed8455cd1d47",
"cnf":{
"x5t#S256": "bwcK0esc3ACC3DB2Y5_lESsXE8o9ltc05O89jdN-dg2"

}
}

@PhilippeDeRyck 17

PROOF-OF-POSSESSION FOR ACCESS TOKENS

Many confidential clients still rely on bearer access tokens

The confidential client can authenticate with a TLS certificate

The TLS certificate can be used to enable token binding

@PhilippeDeRyck

THE OIDC HYBRID FLOW

18

5 Request client authorization

3 Authenticate yourself

4 Login credentials

6 Authorize client

1 Request access

8 Authorization code
and identity token

7
Redirect with
authorization code
and identity token

2Redirect for
authentication

11 Access token / refresh token10Authorization code
with client credentials

12 Access resource

13 Protected resource
9Authenticate user with identity token

Mobile applications cannot
handle client credentials in a

secure way

@PhilippeDeRyck

THE OIDC HYBRID FLOW

19

5 Request client authorization

3 Authenticate yourself

4 Login credentials

6 Authorize client

1 Request access

8 Authorization code
and identity token

7
Redirect with
authorization code
and identity token

2Redirect for
authentication

11 Access token / refresh token10Authorization code
without client credentials

12 Access resource

13 Protected resource
9Authenticate user with identity token

Malicious applications can
intercept the authorization

code and exchange it

@PhilippeDeRyck

THE OIDC HYBRID FLOW WITH PKCE

20

7 Request client authorization

5 Authenticate yourself

6 Login credentials

8 Authorize client

2 Request access

10 Authorization code
and identity token

9
Redirect with
authorization code
and identity token

3Redirect for
authentication

14 Access token / refresh token12Authorization code
with code verifier

15 Access resource

16 Protected resource

1 Generate code verifier

4 Store code challenge

13 Match code challenge to verifier

11Authenticate user with identity token

@PhilippeDeRyck

THE OIDC HYBRID FLOW WITH PKCE

• Mobile applications are public clients
• The lack of client authentication exposes the authorization code to attacks

• The Proof-Key-for-Code-Exchange addition keeps the authorization code secure
• PKCE essentially acts as a one-time password for each individual client
• Prevents the abuse of a stolen authorization code

• Mobile applications can use refresh tokens if they store them securely
• Refresh tokens do not require authentication, so are bearer tokens
• Only good place to store is in the OS's secure application storage

21

@PhilippeDeRyck

THE DANGER OF BEARER TOKENS

22

7 Request client authorization

5 Authenticate yourself

6 Login credentials

8 Authorize client

2 Request access

10 Authorization code
and identity token

9
Redirect with
authorization code
and identity token

3Redirect for
authentication

14 Access token / refresh token12Authorization code
with code verifier

15 Access resource

16 Protected resource

1 Generate code verifier

4 Store code challenge

13 Match code challenge to verifier

11Authenticate user with identity token

Access and refresh tokens are
bearer tokens, allowing

immediate abuse upon theft

@PhilippeDeRyck

BINDING TOKENS TO TLS CERTIFICATES ON PUBLIC CLIENTS

23

7 Request client authorization

5 Authenticate yourself

6 Login credentials

8 Authorize client

2 Request access

10 Authorization code
and identity token

9
Redirect with
authorization code
and identity token

3Redirect for
authentication

14 mTLS-bound access token & refresh token12Authorization code
with code verifier & mTLS

15 Access resource
with mTLS

16 Protected resource

4 Store code challenge

13 Match code challenge to verifier

11Authenticate user with identity token

1 Generate code verifier

@PhilippeDeRyck 24

PROOF-OF-POSSESSION IN MOBILE CLIENTS

Each client instance generates its own certificate

The client uses the self-signed certificate during TLS connections

The authorization server ties the tokens to the client certificate

@PhilippeDeRyck

THE OIDC IMPLICIT FLOW

25

5 Request client authorization

3 Authenticate yourself

4 Login credentials

6 Authorize client

1 Request access

8 access token
and identity token

7
Redirect with
access token
and identity token

2Redirect for
authentication

10 Access resource

11 Protected resource
9Authenticate user with identity token

@PhilippeDeRyck

THE OIDC IMPLICIT FLOW

26

5 Request client authorization

3 Authenticate yourself

4 Login credentials

6 Authorize client

1 Request access

8 access token
and identity token

7
Redirect with
access token
and identity token

2Redirect for
authentication

10 Access resource

11 Protected resource
9Authenticate user with identity token

Access token in URL and
browser history

@PhilippeDeRyck

THE OIDC HYBRID FLOW WITH PKCE

27

7 Request client authorization

5 Authenticate yourself

6 Login credentials

8 Authorize client

2 Request access

10 Authorization code
and identity token

9
Redirect with
authorization code
and identity token

3Redirect for
authentication

13 Access token12Authorization code
with code verifier

15 Access resource

16 Protected resource
11Authenticate user with identity token

1 Generate code verifier

4 Store code challenge

14 Match code challenge to verifier

@PhilippeDeRyck

THE OIDC HYBRID FLOW WITH PKCE

28

7 Request client authorization

5 Authenticate yourself

6 Login credentials

8 Authorize client

2 Request access

10 Authorization code
and identity token

9
Redirect with
authorization code
and identity token

3Redirect for
authentication

13 Access token12Authorization code
with code verifier

15 Access resource

16 Protected resource
11Authenticate user with identity token

1 Generate code verifier

4 Store code challenge

14 Match code challenge to verifier

Web applications cannot
store a refresh token in a

secure location

Re-running the flow allows
the re-use of the user's

session

@PhilippeDeRyck

THE OIDC HYBRID FLOW WITH PKCE

29

7 Request client authorization

5 Authenticate yourself

6 Login credentials

8 Authorize client

2 Request access

10 Authorization code
and identity token

9
Redirect with
authorization code
and identity token

3Redirect for
authentication

13 Access token / refresh token12Authorization code
with code verifier

15 Access resource

16 Protected resource
11Authenticate user with identity token

1 Generate code verifier

4 Store code challenge

14 Match code challenge to verifier

Refresh token lifetime is
linked to the session
expiration lifetimes,
making it short-lived

@PhilippeDeRyck

THE OIDC HYBRID FLOW WITH PKCE

30

7 Request client authorization

5 Authenticate yourself

6 Login credentials

8 Authorize client

2 Request access

10 Authorization code
and identity token

9
Redirect with
authorization code
and identity token

3Redirect for
authentication

13 Access token / refresh token12Authorization code
with code verifier

15 Access resource

16 Protected resource
11Authenticate user with identity token

1 Generate code verifier

4 Store code challenge

14 Match code challenge to verifier

mTLS in browsers is hard,
making low-level proof-of-

possession challenging.

@PhilippeDeRyck 31

WEB SECURITY IS HARD

The Hybrid flow with PKCE is recommended (Implicit flow is still OK)

Refresh tokens cannot be used, unless they are short-lived

PoP tokens for web applications require application-level code

@PhilippeDeRyck

REFERENCES

Proof Key for Code Exchange by OAuth Public Clients
https://tools.ietf.org/html/rfc7636

OAuth 2.0 Security Best Current Practice
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13

OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound Access Tokens
https://tools.ietf.org/html/draft-ietf-oauth-mtls-17

OAuth 2.0 Demonstration of Proof-of-Possession at the Application Layer
https://tools.ietf.org/html/draft-fett-oauth-dpop-00

32

https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13
https://tools.ietf.org/html/draft-ietf-oauth-mtls-17
https://tools.ietf.org/html/draft-fett-oauth-dpop-00

@PhilippeDeRyck 33https://cheatsheets.pragmaticwebsecurity.com/

FREE SECURITY CHEAT SHEETS FOR MODERN APPLICATIONS

@PhilippeDeRyck 34

March 9th – 13th, 2020
Leuven, Belgium

A yearly initiative from the SecAppDev.org non-profit, since 2005

A week-long course on Secure Application Development

Taught by experts from around the world

38 in-depth lectures and 3 one-day workshops

https://secappdev.org

@PhilippeDeRyck

THANK YOU!

Follow me on Twitter to stay up to date
on web security best practices

