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OpenID Connect provides user authentication
OAuth 2.0 allows a client to access resources on behalf of the user

Modern applications use a combination of both protocols
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THE OIDC HYBRID FLOW
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THE OIDC HYBRID FLOW

* Clients are backend applications running in a "secure" environment

* The hybrid flow returns an identity token, access token and refresh token
* |dentity tokens are issued through the frontchannel, along with an authorization code
* The authorization code can be exchanged for an access token and refresh token
e Using the authorization code requires client authentication

* Refresh tokens allow the client to obtain a new access token
* Using a refresh token requires client authentication
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Buffer security breach has been resolved -
here is what you need to know

:@- by Joel Gascoigne Q00000




THE DANGER OF BEARER TOKENS
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BINDING TOKENS TO TLS CERTIFICATES
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"x5t#S8256": "bwcKOesc3ACC3DB2Y5 1ESsXE8091tc05089jdN-dg2”

}
}

, @PhilippeDeRyck

16



Many confidential clients still rely on bearer access tokens
The confidential client can authenticate with a TLS certificate

The TLS certificate can be used to enable token binding
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THE OIDC HYBRID FLOW
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THE OIDC HYBRID FLOW

o Request client authorization
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THE OIDC HYBRID FLOW WITH PKCE
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THE OIDC HYBRID FLOW WITH PKCE

* Mobile applications are public clients
* The lack of client authentication exposes the authorization code to attacks

* The Proof-Key-for-Code-Exchange addition keeps the authorization code secure
* PKCE essentially acts as a one-time password for each individual client
* Prevents the abuse of a stolen authorization code

* Mobile applications can use refresh tokens if they store them securely
* Refresh tokens do not require authentication, so are bearer tokens
* Only good place to store is in the OS's secure application storage
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THE DANGER OF BEARER TOKENS
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BINDING TOKENS TO TLS CERTIFICATES ON PUBLIC CLIENTS
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Each client instance generates its own certificate
The client uses the self-signed certificate during TLS connections

The authorization server ties the tokens to the client certificate
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THE OIDC IMPLICIT FLOW
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THE OIDC HYBRID FLOW WITH PKCE
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THE OIDC HYBRID FLOW WITH PKCE
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THE OIDC HYBRID FLOW WITH PKCE

Refresh token lifetime is
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THE OIDC HYBRID FLOW WITH PKCE

o Request client authorization mTLS in browsers is hard,

making low-level proof-of-
possession challenging.
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The Hybrid flow with PKCE is recommended (Implicit flow is still OK)
Refresh tokens cannot be used, unless they are short-lived

PoP tokens for web applications require application-level code
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https://tools.ietf.org/html/rfc7636

OAuth 2.0 Security Best Current Practice
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13

OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound Access Tokens
https://tools.ietf.org/html/draft-ietf-oauth-mtls-17

OAuth 2.0 Demonstration of Proof-of-Possession at the Application Layer
https://tools.ietf.org/html/draft-fett-oauth-dpop-00

y @PhilippeDeRyck 32


https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13
https://tools.ietf.org/html/draft-ietf-oauth-mtls-17
https://tools.ietf.org/html/draft-fett-oauth-dpop-00

FREE SECURITY CHEAT SHEETS FOR MODERN APPLICATIONS

® O @® @ security cheat sheets x +

& C & pragmaticwebsecurity.com/cheatsheets.html

Security cheat sheets

Keeping track of security best practices while building applications is challenging. These concise and
to-the-point cheat sheets outline best practices for building modern and secure web applications.

Angular and the OWASP top 10

The OWASP top 10 is one of the most influential security documents of all time. But how do these top 10 vulnerabilities
resonate in an Angular application? This cheat sheet offers practical tips on five relevant items from the OWASP top 10.

SUBSCRIBE TO THE CHEAT SHEET SERIES

When subscribing, you can choose to only receive cheat sheet updates, and nothing else. If you do not want to receive updates and new cheat sheets via
email, you can use this direct download link.

JSON Web Tokens (JWT)

JSON Web Tokens (JWTs) have become extremely popular. JWTs seem deceivingly simple. However, to ensure their security
properties, they depend on complex and often misunderstood concepts. This cheat sheet focuses on the underlying concepts.
The cheat sheet covers essential knowledge for every developer producing or consuming JWTs.
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