E

RECENT EVOLUTIONS IN THE OAUTH 2.0
AND OPENID CONNECT LANDSCAPE

https://Pragmatic Web Security.com

DR. PHILIPPE DE RYCK

- Deep understanding of the web security landscape

- Google Developer Expert (not employed by Google)

- Course curator of the = SecAppDev course
(https://secappdev.org)

High-quality security training for developers and managers

Custom courses covering web security, APl security, Angular security, ...

Consulting services on security, Oauth 2.0, OpenID Connect, ...

User authentication

E [
Read & write data
BROWSER > BACKEND

, @PhilippeDeRyck

User authentication Q

Read & write data
CLIENT API

, @PhilippeDeRyck

, @PhilippeDeRyck

CLIENT

User authentication

Read & write data

OpeniD Connect

User authentication

IDENTITY
PROVIDER
CLIENT Read & write data Oﬁ
> T3

API

’ @PhilippeDeRyck

OpeniD Connect

User authentication

IDENTITY

—

CLIENT Read & write data Oﬁ Read data
> T3

API CLIENT

’ @PhilippeDeRyck

Results in an identity

token and access token

User authentication

IDENTITY
— PROVIDER
CLIENT Read & write data Oﬁ Read data
> T3
API CLIENT

Uses an access Uses an access
token token

’ @PhilippeDeRyck

OpenID Connect provides user authentication
OAuth 2.0 allows a client to access resources on behalf of the user

Modern applications use a combination of both protocols

, @PhilippeDeRyck

THE OIDC HYBRID FLOW

o Request client authorization

e Authenticate yourself

IDENTITY

USER o Login credentials PROVIDER

Authorization code @

with client credentials @ Access token / refresh token

Redirect for o
authentication

[

BROWSER

Redirect with
authorization code
and identity token

o Request access

Authorization code
and identity token

>

@ Access resource
RESOURCE

@ Protected resource SERVER

CLIENT

Authenticate user with identity token e

, @PhilippeDeRyck

THE REFRESH TOKEN FLOW

Refresh token
))) 0 9 Access token & refresh token
with client credentials

CLIENT o Protected resource

RESOURCE
SERVER

11

THE OIDC HYBRID FLOW

* Clients are backend applications running in a "secure" environment

* The hybrid flow returns an identity token, access token and refresh token
* |dentity tokens are issued through the frontchannel, along with an authorization code
* The authorization code can be exchanged for an access token and refresh token
e Using the authorization code requires client authentication

* Refresh tokens allow the client to obtain a new access token
* Using a refresh token requires client authentication

’ @PhilippeDeRyck

12

Buffer security breach has been resolved -
here is what you need to know

:@- by Joel Gascoigne Q00000

THE DANGER OF BEARER TOKENS

o Request client authorization

e Authenticate yourself

IDENTITY

USER o Login credentials PROVIDER

Access tokens are bearer
tokens, allowing immediate
abuse upon theft

Authorization code @
with client credentials

Redirect for e
authentication

Redirect with
authorization code
and identity token

RESOURCE
SERVER

Authorization code
and identity token

BROWSER CLIENT

@ Protected resource

Authenticate user with identity token e 14

BINDING TOKENS TO TLS CERTIFICATES

o Request client authorization

e Authenticate yourself

IDENTITY

USER o Login credentials PROVIDER

Authorization code Access token bound to the TLS certificate /
with mTLS refresh token

Redirect for o
authentication

[

BROWSER

Redirect with @
authorization code ‘
and identity token

o Request access

Authorization code
and identity token

Access resource
with mTLS

RESOURCE
SERVER

CLIENT

@ Protected resource
Authenticate user with identity token o

-
-

()]
S

-
-

o
S
Q o

- -
- -
- D
- -
- -

n n

X w N
S w

"iat":
"scope”
"jEi":

"enf":{

"jdoe@example.com”,
"https://api.example.com”,
"RandomClientID",
"https://authorizationserver.example.com/",
1419356238,

1419350238,

: "read write",
"405b4d4e-8501-4ela-al38-ed8455cd1d47”,

"x5t#S8256": "bwcKOesc3ACC3DB2Y5 1ESsXE8091tc05089jdN-dg2”

}
}

, @PhilippeDeRyck

16

Many confidential clients still rely on bearer access tokens
The confidential client can authenticate with a TLS certificate

The TLS certificate can be used to enable token binding

, @PhilippeDeRyck

THE OIDC HYBRID FLOW

o Request client authorization

Mobile applications cannot

9 Authenticate yourself handle client credentials in a

secure way

IDENTITY
USER o Login credentials PROVIDER

Authorization code @

with client credentials @ Access token / refresh token

Redirect for o
authentication Redirect with
authorization code

and identity token

E o Request access

Authorization code
BROWSER and identity token

Authenticate user with identity token e

e—)

3
3
_O RESOURCE
CLIENT @ Protected resource SERVER

18

THE OIDC HYBRID FLOW

o Request client authorization

Malicious applications can
e Authenticate yourself

intercept the authorization
code and exchange it

IDENTITY
PROVIDER

USER o Login credentials

Authorization code
without client credentials

10 @ Access token / refresh token

Redirect for o
authentication

Redirect with
authorization code
and identity token

RESOURCE
SERVER

Authorization code
and identity token

BROWSER

Authenticate user with identity token e 19

THE OIDC HYBRID FLOW WITH PKCE

o Request client authorization

e Authenticate yourself

IDENTITY
USER e Login credentials PROVIDER o Store code challenge

e Authorize client @ Match code challenge to verifier

Authorization code @

with code verifier @ Access token / refresh token

Redirect for e
authentication Redirect with
authorization code

and identity token

o Generate code verifier

~—\
o Request access c’? @ Access resource
o) >
Authorization code O J RESOURCE

BROWSER and identity token SERVER

CLIENT @ Protected resource

Authenticate user with identity token @ 20

THE OIDC HYBRID FLOW WITH PKCE

* Mobile applications are public clients
* The lack of client authentication exposes the authorization code to attacks

* The Proof-Key-for-Code-Exchange addition keeps the authorization code secure
* PKCE essentially acts as a one-time password for each individual client
* Prevents the abuse of a stolen authorization code

* Mobile applications can use refresh tokens if they store them securely
* Refresh tokens do not require authentication, so are bearer tokens
* Only good place to store is in the OS's secure application storage

y @PhilippeDeRyck 21

THE DANGER OF BEARER TOKENS

Access and refresh tokens are
bearer tokens, allowing
© ~uthenticate yourselt immediate abuse upon theft

o Request client authorization

IDENTITY

USER e Login credentials PROVIDER

Authorization code @
with code verifier

Redirect for o
authentication Redirect with
authorization code

and identity token

RESOURCE
SERVER

Authorization code
and identity token

BROWSER

Authenticate user with identity token @ 22

BINDING TOKENS TO TLS CERTIFICATES ON PUBLIC CLIENTS

o Request client authorization

e Authenticate yourself

IDENTITY
USER e Login credentials PROVIDER 0 Store code challenge

e Authorize client @ Match code challenge to verifier

Authorization code
with code verifier & mTLS

@ mTLS-bound access token & refresh token

Redirect for o
authentication

Redirect with
authorization code
and identity token

o Generate code verifier

T
ro) Access resource
o Request access O with mTLS
o
Authorization code o/ RESOURCE

BROWSER and identity token SERVER

CLIENT @ Protected resource

Authenticate user with identity token @ 23

Each client instance generates its own certificate
The client uses the self-signed certificate during TLS connections

The authorization server ties the tokens to the client certificate

, @PhilippeDeRyck

USER

Redirect for
authentication

[

BROWSER

THE OIDC IMPLICIT FLOW

o Request client authorization

e Authenticate yourself

Redirect with
access token
and identity token

o Request access

e access token
and identity token

Authenticate user with identity token o

IDENTITY
PROVIDER

CLIENT Protected resource

RESOURCE
SERVER

25

THE OIDC IMPLICIT FLOW

o Request client authorization

e Authenticate yourself

IDENTITY

USER o Login credentials PROVIDER

Access token in URL and

Redirect for browser history
authentication o

Redirect with
access token
and identity token

RESOURCE
SERVER

BROWSER

e access token
and identity token CLIENT Protected resource

Authenticate user with identity token o

26

THE OIDC HYBRID FLOW WITH PKCE

o Request client authorization

e Authenticate yourself

IDENTITY
USER e Login credentials PROVIDER e Store code challenge

e Authorize client @ Match code challenge to verifier

Authorization code
) . Access token
with code verifier

Redirect with
authorization code
and identity token

o Request access

Authorization code
and identity token

Redirect for o
authentication

[

BROWSER

o Generate code verifier

RESOURCE
SERVER

CLIENT @ Protected resource

Authenticate user with identity token @ 27

THE OIDC HYBRID FLOW WITH PKCE

o Request client authorization

e Authenticate yourself

USER e Login credentials

Redirect for e
authentication Redirect with
authorization code

and identity token

o Request access

Authorization code
with code verifier

[

Authorization code

BROWSER and identity token

Authenticate user with identity token @

Re-running the flow allows

the re-use of the user's
session

IDENTITY
PROVIDER

° Store code challenge

@ Match code challenge to verifier

Web applications cannot
@ store a refresh token in a
secure location

RESOURCE
SERVER

CLIENT @ Protected resource

28

THE OIDC HYBRID FLOW WITH PKCE

Refresh token lifetime is

o Request client authorization linked to the session

expiration lifetimes,
making it short-lived

e Authenticate yourself

IDENTITY
USER e Login credentials PROVIDER 0 Store code challenge

e Authorize client @ Match code challengé to verifier

Authorization code @

with code verifier @ Access token / refresh token

Redirect for e
authentication Redirect with
authorization code

and identity token

E o Request access

Authorization code
BROWSER and identity token

Authenticate user with identity token @

o Generate code verifier

RESOURCE
SERVER

CLIENT @ Protected resource

29

THE OIDC HYBRID FLOW WITH PKCE

o Request client authorization mTLS in browsers is hard,

making low-level proof-of-
possession challenging.

e Authenticate yourself

IDENTITY
USER e Login credentials PROVIDER

e Authorize client @ Match code challenge tgverifier

/8 Store code challenge

Authorization code
. . 2t . @ @ Access token / refresh token
with code verifier

Redirect with
authorization code
and identity token

E e Request access

Authorization code
BROWSER and identity token

Authenticate user with identity token @

Redirect for o
authentication

o Generate code verifiel

RESOURCE
SERVER

CLIENT @ Protected resource

30

The Hybrid flow with PKCE is recommended (Implicit flow is still OK)
Refresh tokens cannot be used, unless they are short-lived

PoP tokens for web applications require application-level code

, @PhilippeDeRyck

REFERENCES

Proof Key for Code Exchange by OAuth Public Clients
https://tools.ietf.org/html/rfc7636

OAuth 2.0 Security Best Current Practice
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13

OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound Access Tokens
https://tools.ietf.org/html/draft-ietf-oauth-mtls-17

OAuth 2.0 Demonstration of Proof-of-Possession at the Application Layer
https://tools.ietf.org/html/draft-fett-oauth-dpop-00

y @PhilippeDeRyck 32

https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13
https://tools.ietf.org/html/draft-ietf-oauth-mtls-17
https://tools.ietf.org/html/draft-fett-oauth-dpop-00

FREE SECURITY CHEAT SHEETS FOR MODERN APPLICATIONS

® O @® @ security cheat sheets x +

& C & pragmaticwebsecurity.com/cheatsheets.html

Security cheat sheets

Keeping track of security best practices while building applications is challenging. These concise and
to-the-point cheat sheets outline best practices for building modern and secure web applications.

Angular and the OWASP top 10

The OWASP top 10 is one of the most influential security documents of all time. But how do these top 10 vulnerabilities
resonate in an Angular application? This cheat sheet offers practical tips on five relevant items from the OWASP top 10.

SUBSCRIBE TO THE CHEAT SHEET SERIES

When subscribing, you can choose to only receive cheat sheet updates, and nothing else. If you do not want to receive updates and new cheat sheets via
email, you can use this direct download link.

JSON Web Tokens (JWT)

JSON Web Tokens (JWTs) have become extremely popular. JWTs seem deceivingly simple. However, to ensure their security
properties, they depend on complex and often misunderstood concepts. This cheat sheet focuses on the underlying concepts.
The cheat sheet covers essential knowledge for every developer producing or consuming JWTs.

y @PhilippeDeRyck

- S A D March 9t — 13th, 2020
U ec p p eV Leuven, Belgium
oy

A week-long course on Secure Application Development

Taught by experts from around the world

38 in-depth lectures and 3 one-day workshops

https://secappdev.org

A yearly initiative from the SecAppDev.org non-profit, since 2005

Pragmatic Web Security
Security for developers

THANK YOU!

Follow me on Twitter to stay up to date
on web security best practices

@PhilippeDeRyck

