E

THE REALITY OF BUILDING
SECURE APIs

https://Pragmatic Web Security.com

1 Broken object level authorization

2 Broken authentication

3 Broken object property-level authorization
4 Unrestricted resource consumption
5 Broken function level authorization

6 Unrestricted access to sensitive business flows

7 Server-side request forgery @OUJHSD
8 Security misconfiguration API Security

9 Improper inventory management T O P 1 o
10 Unsafe consumption of APIs J—

Unpatched bug chain poses ‘mass account
takeover’ threat to Yunmai weight monitoring

app

Adam Bannister

¥y OFfSM

User data related to at least 500,000 Android accounts at risk

@) pdr.online https://portswigger.net/daily-swig/unpatched-bug-chain-poses-mass-account-takeover-threat-to-yunmai-weight-monitoring-app

Dropbox.Tech Topics v Developers Jobs ~

5 = .:cccllllc:,'

... leKKXXNII(XBxkkkOOOO(KI&kxccc R i» SEsrrriia .cdka!lO(KxoxxxOOO(XXKMOXKxIMWNWNWNMonWGO&: H ;cllldxxddddl le” : cclddxxdeOOBKKKwOOkdlcclodxxxxxdc S
.......... coxkemmkexxxxxxmxmokm:c......... e o + CAKKKKKIOO0 1 1dONNKKWRNNK D OSSO ONNOONNNNNNNNNNNNONNCOIN X Ok k6808 kd] v oxxdolc' s ‘ .;c::lolc:;:loodoooeal(mxnwtndodxkxkxxdoc:_'...........,
... ldxka)omnl TKBKOOOOMNNNOOOIKKKK B0 ; vaenes ya s t0XXXKKOBKE O OKKKOONNNNNG k OKBE KON NNNNNNNNNK d KNSK KXOKK k00xo © |, cloolc A .ddool, .. ; 0dOKXKB000000880k xk8KKKKB80ko &, "
............ ‘oa cersrensasannesanss, OGLIKKNNWWWINNAWX xCCC | ookOOOKXXXMNmNch e e, 000A0OBAK0KOKDAK KB KOMNNKDKXKABBKKK KKK MK KXKx :lKkoOkakl(Dkxo: ‘ o0lds:,, S o s OD0, & lmdolodxxxukkxxkkekxmxxnl PEAEEEEE Y
................................. Lt Ixk Ok OKNNWAWNENGL " . | ; 1x80KO0KOOOOMNNNNNNNNNXD] * 'ooloxOOOOOOOxkadxaxmaamOMKKmexxaxoxﬁx ‘0l 00l :0KDxxx1;" - TS ar daeyc 0B, ..""cc "cokaKXXOxl

T ,lddxkkkam o ;, . ;1xkkax)ooanootxxxxxdc;. ot .' cccclcloodaolc1ocoaxxoooooooooosaeemoomadcod Peeaiis e :ododoeon; e T ass aO0BO0,s 00 sseas = ,.lloodxxxdoc s
coxooso:mana. T exOXXKIOXIKIOOXIK00NI0] . eele; ;i tecoddxxkkkkO00k0000BKk xdx8KXBdooe. .. " ", ; iexBkodleoce, *, 5, ... sesptOOBRLS, 00 seeeses r S IOOODDIOBN " e

...... ' exkOXKOKKOSOKKRBa0kd], . ..",':llc."..'.....'...: lodxxxklkkxxxlkxdcl!xodkaklxl...'.'.,"..conlclcc SUIO0D0 s +444 Insig s R 30RT, Rl " P L
Cedneeses , toxBKX80080060kkdla:, . . .+.dd4do:, . coooodxkxl: : oooxe ;odecodukkxoc::1oell:’, ;, i:tea); tealxOxdl: ‘e 4 T T T I oo ‘re00llole:s:::;
oss’ COMKKDOOOOKAAED 22, "o <oso DOR:". ,releiiloe, ', , ,0d;. 1 ;00KOxdodddxkd: :x00;, ;" :;',,,,,lddoddoc as gintetals o ' 1 :eloodddoddc
« v, 1x000800%001 :, S ran i EE rrEaDs : . 'cOKDxo: , odkkOkkkk@00; ;1:,11 ;1ddoc1xOkxkd; ll , »ooxkOOkkkk

«e.. ' t0KkDDOKxdoOlcC .lodddle; tcce;’ .'loxxoc,.,lodeGKKKKKOxldo;cdoxNOxkOOOkkd:::ool:;,',. ' IxBKeOxd)
..... ,odkkkxdle ;, ., cdkxkOkxxol :, . ;0X001:. " coodk@XNNNXKkx80kd1KKKNNKOKAKKOxdd] : (clol : tcc!

., odxxdo:,", ;"lxxdodxmxoc:. ’
.relol:;, ", " ... okkxxdx88kdoc;
13E8S 2 cddthxkkxxoc

... dKDdoc' ', coxkBXNNNNXKKKOKKEXNNNXXBKXNXDdodd] (coddloc :
chxolc; ', 1 1x0AKKOXK 00k xd X KXNNNXKKKKXNXxX : 10l (coddle; ;
;okBKKBkxkkx1 ; 1 1KKXMNNXDxKkOKNNE]L , ;lc, ,cédoc:
- okKKKOkddoolc 'exBONOBxdExBXNKX : ., te! olclc -
. - 'cldlaakuxoll' :dk0KXX8xo00dk00xe ; , , & looolcloolllc
..... “di o0t - ST - :, ;ookkxdll1l:, . chKKK&dolodxxdc 1a0re ooollccccclc

attacks (with help from
our bug bounty program)

// By Po-Ning Tseng * Sep 20, 2022

| am Dr. Philippe De Ryck

©

)4 E)?lpDelr’Es Google Developer Expert

Pragmatic Web Security

Founder of Pragmatic Web Security

<& SecAppDev SecAppDev organizer

| help developers with security

@ Hands-on in-depth security training

@ Advanced online security courses

Security advisory services

https://pdr.online

GRAB A COPY OF THE SLIDES ...

https://pragmaticwebsecurity.com/talks

QT

/in/PhilippeDeRyck wzt*

https://infosec.exchange/@PhilippeDeRyck

MRS
oty 1{’-{;‘
-:r.,fw.

@) pdr.online Website icons created by Uniconlabs - Flaticon

1 Broken object level authorization

2 Broken authentication

3 Broken object property-level authorization

4 Unrestricted resource consumption

5 Broken function level authorization

6 Unrestricted access to sensitive business flows

7 Server-side request forgery @DUJHSD

8 Security misconfiguration API Security

9 Improper inventory management T O P 1 o
10 Unsafe consumption of APIs J—

¢ pdr.online ~ . Perimeter / VPC / Firewall / WAF / ...

ATTACKER BACKEND

o

API

@ pdr.online

localhost

N

ATTACKER BACKEND

° Request with URL parameter
@

This attack is known as Server-Side
Request Forgery (SSRF)

@ pdr.online

How does SSRF happen?

ATTACKER

@ pdr.online

e Request with a URL as data

e Load resource with URL

° Response

BACKEND e Response

SSRF occurs in all kinds of services,
such as image loading, link
previews, webhooks, proxies, ...

An SSRF vulnerability can lead to

requests being sent to localhost,

internal hosts, token services, or
cloud security services ...

SERVER

https://mycdn.example.com/image.png

Valid input

https://127.0.0.1:8080

|

I Invalid input

¢ pdr.online

Abusing URL Parsers

_CcURL
libcurl

http://foo@evil.com:80@google.com/

NodeJS URL
Perl URI -
Go net/url

PHP parse_url
Ruby addressable

@7 pdr.online https://cheatsheetseries.owasp.org/assets/Server _Side Request _Forgery Prevention Cheat_Sheet Orange Tsai Talk.pdf

SSRF AT DROPBOX

The inconsistent URL parsing left us open to the kind of SSRF vulnerability described in this
Black Hat talk from 2017. An example payload is https://dl-web.dropbox.com\@<host>:

<port> . Parsing it with the URI library will return the part before \@ as the authority
and pass the check:

In [1]: URI.parse('https://dl-web.dropbox.com\@127.0.0.1:8080") .authority

Out[1]: 'dl-web.dropbox.com’

However, parsing it with urlsplit would treat the part after \@ as the hosthame and
direct the request to an attacker-specified address:

In [1]: urlsplit("https://dl-web.dropbox.com\@127.0.0.1:8080") .hostname

Out[1]: "127.08.0.1"

@7 pdr.online https://dropbox.tech/security/bug-bounty-program-ssrf-attack

FIXING SSRF AT DROPBOX

But a slightly better solution is to construct the URL with the intended domain instead of
verifying that the user input has a valid one. This way, we’re not making requests to a raw

user-provided URL. This solution looks like:

try:
safe_uri = str(
URI(
scheme="https",
authority=BLOCK_CLUSTER,
path=args.path,
query=args.query,

)

conn, url = CurlConnection.build_connection_url(safe_url)
except Exception as e:
raise HttpStatusBadRequestException()

CQ? pdr.online https://dropbox.tech/security/bug-bounty-program-ssrf-attack

FIXING SSRF BY REMOVING AMBIGUITY ON THE SERVER

Accept a URL as input on the server and immediately transform it into a unambiguous value

const input = req.body.url
// Transform the input into a single representation

const u = new URL(input)
// Construct a unambiguous safe URL to use in the application
const safeUrl = new URL(https://${u.host}${u.pathname}${u.search})

I

The server-side code interprets the

input URL only once, leaving no
P y . ’ 8 supposed to be controlled by the
room for confusion between two)
client (e.g., the scheme)

different URL parsers T

U s WNE

Fix any part of the URL that is not

The safe URL can now be used to
check against an allow list of URLs

¢ pdr.online

FIXING SSRF BY REMOVING AMBIGUITY ON THE CLIENT

The code handling the URL input

The data received by the API

1 function saveUrl() {

2 let strUrl = document.getElementById("cbh").value;
3 let url = new URL(struUrl);
4

5 let urlData = {

6 ""'scheme'": url.protocol,

7 "hostname'": url.hostname,
8 “"port": url.port,

9 “"path": url.pathname,

10 “"params": url.search

11 ¥

12

13 // Send this data to the backend for processing

NOOURWN -

{
"scheme":"https:",
""hostname":"restograde.com"
IIpo r..tll o 1011
"path"'"/callback"
IIpa r.amsll o 1011 ,

Iy

’

[

The client accepts a full URL in the Ul, and
then parses it in the browser before
sending it to the backend

@ pdr.online

I

The server-side code only accepts a
decomposed URL, which enables
strict input validation on each
component, which automatically
removes all ambiguity

SSRF vulnerabilities often occur when there's ambiguity in
matching against allow-lists.

Ensure the data used for server-side requests is unambiguous
and trustworthy according to your security policy.

@ pdr.online

1 Broken object level authorization

2 Broken authentication

3 Broken object property-level authorization
4 Unrestricted resource consumption
5 Broken function level authorization

6 Unrestricted access to sensitive business flows

7 Server-side request forgery @DUJHSD
8 Security misconfiguration API Security

9 Improper inventory management T O P 1 o
10 Unsafe consumption of APIs J—

MASS ACCOUNT TAKEOVER IN THE YUNMAI SMART SCALE API

10 minutes 3go

1330,

N

(W306 (Nijga >

D Breaking authentication

@ pdr.online

APIs often (unknowingly) leak information that
enables attacks such as username enumeration.

Carefully analyze your APIs for explicit and implicit
data leakage.

@ pdr.online

Many endpoints fail to implement rate limiting, which allows
attackers to launch brute force attacks. Examples include SMS
code prompts, reset tokens, and authentication forms.

Implement rate limiting to minimize the attacker’s ability to
abuse these endpoints.

@ pdr.online

Attackers often abuse unsigned values
to implement guessing attacks.

Mitigation techniques against guessing attacks include
using long random identifiers (e.q., a UUID) or using
signed values that allow the detection of tampering.

@ pdr.online

1 Broken object level authorization

2 Broken authentication

3 Broken object property-level authorization
4 Unrestricted resource consumption
5 Broken function level authorization

6 Unrestricted access to sensitive business flows

7 Server-side request forgery @DUJHSD
8 Security misconfiguration API Security

9 Improper inventory management T O P 1 o
10 Unsafe consumption of APIs J—

Reverse Engineering Bumble’s
API

When you have too much time on your hands and want to dump out
Bumble’s entire user base and bypass paying for premium Bumble
Boost features.

‘ Sanjana Sarda
Nov 14 - 8 min read ’ m n m

cathode gay tube
= @donk_enby
full disclosure: scraping fleets from public accounts
without triggering the read notification

the endpoint is: api.twitter.com/fleets/v1/user...

12:51 AM - Nov 21, 2020 - Twitter Web App

528 Retweets 226 Quote Tweets 1.4K Likes

O n Y, w

cathode gay tube @donk_enby - Nov 21

‘ Replying to @donk_enby
for auth you just use the same leaked consumer keys from official twitter
app that lets you use firehose for free: gist.github.com/shobotch/51600...

ddg api.twitter.com/auth/1/xauth_p... for how to get a token

OGitHub Gist

Twitter (un)official Consumer Key
Twitter (un)official Consumer Key. GitHub Gist: instantly share code,
notes, and snippets.

The attack surface of an API
consists of all accessible endpoints,
regardless of how and if they are used by the client

@ pdr.online

Are client-side controls and validation

procedures really useless?

@ pdr.online

Strict security controls on the client make your API
security controls an effective detection mechanism
for malicious behavior

@ pdr.online

1 Broken object level authorization

2 Broken authentication

3 Broken object property-level authorization
4 Unrestricted resource consumption
5 Broken function level authorization

6 Unrestricted access to sensitive business flows

; Gouses

: AP1 Securit
; TOP10
: —

public void editRestaurant(long id, Restaurant restaurant) {
if(user.hasRole("FOH_MANAGER") || user.hasRole("EXEC_CHEF")) {
throw new AuthorizationException(":("); e

}

restaurantData.update(id, restaurant);

Y

Authorization policies should start
from a "deny-by-default"” position to
avoid bypasses. Missing a role in this

list will cause an authorization bypass.

@ pdr.online

Denying everything except the expected scenario is a best practice

public void editRestaurant(long id, Restaurant restaurant) {
if(user.hasRole("OWNER") || user.hasRole("GENERAL_MANAGER")) {
restaurantData.update(id, restaurant); e

}

throw new AuthorizationException(":(");

};

N O o B WN R

A mistake in a "deny-by-default” policy
will cause a functional problem, but
never an authorization bypass

¢ pdr.online

¢ pdr.online

Automatically enforcing role-based access control on endpoints in Spring

1 @PreAuthorize("hasRole('OWNER') or hasRole('GENERAL_MANAGER')")
2 public void editRestaurant(long id, Restaurant restaurant) {

3 restaurantData.update(id, restaurant);

41

Role-based access control (RBAC) is
very intuitive and widely used, as
evidenced by framework-level support
for enforcing authorization.

@PreAuthorize("hasRole('OWNER")
or hasRole('GENERAL_MANAGER')
? or hasRole('CONTENT_MODERATOR")
or hasRole('ADMIN')")
public void editRestaurant(long id, Restaurant restaurant) {
restaurantData.update(id, restaurant);

Y

RBAC is hard to manage and maintain,
and often leads to a problem known as
role explosion

@ pdr.online

¢ pdr.online

Permission-based security decouples the code from the authorization policy

1 @PreAuthorize("hasPermission('EDIT_RESTAURANT')") ?
2 public void editRestaurant(long id, Restaurant restaurant) <{
3 restaurantData.update(id, restaurant);

40}

Using permissions decouples the authorization
policy from the implementation.

Auditing this code becomes straightforward and
does not require specific knowledge of the
authorization policy.

Roles Permissions VIEW_RESTAURANT EDIT_RESTAURANT DELETE_RESTAURANT

FOH_MANAGER

OWNER

GENERAL_MANAGER

CONTENT_MODERATOR

ADMIN

<<<<<

<< << X
<X X <X

¢ pdr.online

Hmm, that wasn't so hard?

@ pdr.online

@PreAuthorize("hasPermission('EDIT_RESTAURANT')")

public void editRestaurant(long id, Restaurant restaurant) {

restaurantData.update(id, restaurant);

Y

PATCH /restaurants/1 HTTP/1.1
{ name: ..}

@ pdr.online

PATCH /restaurants/2 HTTP/1.1
{ name: ..

Without object-level access

control, a user with the edit

permission can change any
restaurant

cc

T-Mobile Websﬂe Allowed Hackers
to Access Your Account Data With
Just Your Phone Number

Florida state tax website bug exposed filers' data

Zack Whittaker @zackwhittaker / 7:00 PM GMT+1 « December 2, 2022 E] Comment

7

A permission check only
allows authorized users to
access this endpoint

@PreAuthorize("hasPermission('EDIT_RESTAURANT')") @
public void editRestaurant(long id, Restaurant restaurant) f{

Restaurant orig = restaurantData.get(id);

if(user.hasRole("OWNER") && 'orig.getOwner().equals(user)) {

throw new AuthorizationException(":(");

}

restaurantData.update(id, restaurant);

"]

Violation of the deny-by-
default principle, and

Policies like these are

impossible to audit for

transforming the code is i
security

a lot harder this time ...
@ pdr.online

Certain roles require
additional restrictions,
such as restaurant
ownership

D BOLA in practice

A "centralized" policy results in a clear and auditable authorization policy

O 00 NO Ul A~ WN -

}

Restaurant orig = restaurantData.get(id);

public void editRestaurant(long id, Restaurant restaurant) {

if(policy.canEditRestaurant(user, orig)) { e
restaurantData.update(id, restaurant);

¥

else {
throw new AuthorizationException(":(");

}

The code is easy to audit, without
specific knowledge of the detailed
authorization policy

Centralizing the authorization logic encapsulates complexity in a single location

00O O Ul A~ WN B

@) pdr.online ;

// Admins are always allowed
if(isAdmin(u)) return true; ®

public static boolean canEditRestaurant(User u, Restaurant r) {

// Owners can only update their own restaurant
if(r.getOwner().equals(u)) return true;

A single place to implement complex
authorization logic makes things
more manageable and easy to control

return false; O—I Note the deny-by-default approach

CLIENT

Ask the Policy Engine to
make an authorization
decision

A "centralized" policy results in a clear and auditable authorization policy

public void editRestaurant(long id, Restaurant restaurant) { Gl
Restaurant orig = restaurantData.get(id);
if(policy.canEditRestaurant(user, orig)) {
restaurantData.update(id, restaurant);
I3
else {
throw new AuthorizationException(":(");

}

N oo B WINBRF-

}

¢ pdr.online

CLIENT

y @PhilippeDeRyck

Ask the Policy Engine to
make an authorization
decision

Open Policy Agent

PERMISSIONS

https://www.openpolicyagent.org/

Complex authorization logic should not be
scattered throughout the code, but is best defined
in a clear and understandable authorization policy

@ pdr.online

Simplify the auditing of your authorization policy
by making authorization logic explicit, even when
endpoints have no specific authorization
requirements.

@ pdr.online

1 Broken object level authorization

2 Broken authentication

3 Broken object property-level authorization
4 Unrestricted resource consumption
5 Broken function level authorization

6 Unrestricted access to sensitive business flows

7 Server-side request forgery @DUJHSD
8 Security misconfiguration API Security

9 Improper inventory management T O P 1 o
10 Unsafe consumption of APIs J—

A security flaw in Grindr let
anyone easily hijack user
accounts

Zack Whittaker @zackwhittaker / 10:22 PM GMT+2 « October 2, 2020

[2] Image Credits: SOPA Images / Getty Images

Grindr, ® one of the world’s largest dating and social networking
apps for gay, bi, trans, and queer people, has fixed a security
vulnerability that allowed anyone to hijack and take control of any

user’s account using only their email address.

@RequestMapping(path = "/online/users", method = GET, produces = "application/json")
public ResponseEntity<Object> getOnlineUsers() A{

List<User> users = UserService.getOnlineUsers();

return new ResponseEntity<Object>(users, HttpStatus.OK);

}

public class User {
private String id, name, address;

public String getName() {
return name;

I3
Data fields are automatically
public String getAddress() { e translated to JSON, even when they
return address; are not supposed to be exposed
I3

}

@ pdr.online

@RequestMapping(path = "/online/users", method = GET, produces = "application/json")
public ResponseEntity<Object> getOnlineUsers() A{

List<User> users = UserService.getOnlineUsers();

return new ResponseEntity<Object>(users, HttpStatus.OK);

}

public class User {
private String id, name, address;

public String getName() {
return name;

} Annotations can be used to avoid
including sensitive fields in JSON
@JsonIghore @ responses, but this approach is
public String getAddress() { impossible at scale and violates the
return address; "deny-by-default” best practice
I3

@RequestMapping(path = "/online/users", method = GET, produces = "application/json")
public ResponseEntity<Object> getOnlineUsers() A{
List<User> users = UserService.getOnlineUsers();
return new ResponseEntity<Object>(users.stream().map(PublicUserInfo::new), HttpStatus.OK);

}

public class PublicUserInfo {
private String id, name;

public PublicUserInfo(User user) {
this.setId(user.getId());
this.setName(user.getName());

}

public String getName() {
return name;

}

@7 pdr.online b

Avoid directly returning internal application data, as
this often results in the exposure of sensitive data.

Use strict schemas or DTOs in combination with a well-
defined OpenAPI specification of your API.

@ pdr.online

If an APl automatically exposes data, does

it also automatically accept data?

@ pdr.online

@RequestMapping(path = "/user/{id}", method = PATCH, consumes = "application/json")
public void updateUser(String id, @RequestBody User user) {

UserService.updateUser(id, user); o Updates the DB with new field values

b for the user with the given ID

public class User { {
private String id, name, role; "name": "Dr. Phil"

public void setName(String name) {
this.name = name;

b
public String setRole(String role) { {
this. role = role; "name": "Philippe becomes admin",
¥ "role": "admin"
I3 I3

@ pdr.online

@RequestMapping(path = "/user/{id}", method = PATCH, consumes = "application/json")
public void updateUser(String id, @RequestBody User user) {
UserService.updateUser(id, user);

}

public class User {
private String id, name, role;

public void setName(String name) {
this.name = name;

}

Annotations can be used to avoid
populating sensitive fields with JSON data,
but this approach is impossible at scale and
violates the "deny-by-default” best practice

@JsonProperty(access = Access.READ_ONLY) @
public String setRole(String role) {
this. role = role;

}
}

@ pdr.online

The Java Spring endpoint returning users

1 @RequestMapping(path = "/user/{id}", method = PATCH, consumes = "application/json")
2 public void updateUser(String id, @RequestBody UpdateUserInfo user) {

3 UserService.updateUser(id, user);

4}

The UpdateUserInfo DTO class

1 public class UpdateUserInfo {
2 private name;
3
4 ublic Strin etName
The DTO class only defines fields that P g9 04
5 return name;
are supposed to be populated.
06 b
A User object is never directly / . _ .
accepted as input from the client. 8 public void setName(String name) {
9 this.name = name;
10 I3
11}

¢ pdr.online

Avoid directly transforming incoming data into model objects, as
this often results in the accidental writing of internal values.

Use strict schemas or DTOs in combination with a well-defined
OpenAPI specification of your API.

@ pdr.online

How can we address BOPLA issues?

@ pdr.online

coodO UL A, WNBRE

NNNNNNNNNNRPRPRRPPRRPPRPLPRPRE
OCONOUDNWNROOONOUUNAWNR OO O

openapi: 3.0.0

paths:
/user/{id}: -
patch: The contract contains human readable
summary: Update user information @ explanations, making it the perfect starting
parameters: point for generating documentation
- name: 1id
in: path The contract specifies the expected URL
required: true
schema: parameters and body parameters, along
type: string with the content type.
requestBody:
required: true
content:
application/json:
schema:
$ref: '#/components/schemas/UpdateUserInfo’
responses: The contract specifies different response
'200"': e&—— codes, along with their content type and
description: User information updated successfully contents (if relevant)
components:
schemas:
UpdateUserInfo:
type: object
required:
- name
properties:
name:

type: string

Automated IDOR Discovery through Stateful
Swagger Fuzzing

- Aaron Loo, Engineering Manager
Jan 16, 2020
4.9\

Scali it [i ;
i |\/[|CrOSOTt Research Blog

they make it to production servers.

Today, we’re excited to announce that we
we’ve developed to identify Insecure Direc
stateful Swagger fuzzing, tailored to supp:

integrates with our Continuous Integration RESTler ﬁnds SeCUth and re||ab|||ty bugs

coverage as web applications evolve. :
»through automated fuzzing

Published November 16, 2020

u n m Research Area

([} APIShield

Overview

v Security

API Discovery
Volumetric Abuse Detection

Sequential Abuse Detection
(Beta)

» Mutual TLS (mTLS)

v Schema Validation

Configure

Schema Validation

An API schema defines which API requests are valid based on several request properties like target endpoint and HTTP method.

Schema Validation allows you to check if incoming traffic complies with a previously supplied APl schema. When you provide an API
schema, API Shield creates rules for incoming traffic from the schema definitions. These rules define which traffic is allowed and

which traf @CfUhCh Why 42Crunch Platform v Solutions ¥ Resources ¥ Company v

For help ¢

This fez Protection is
automatically applied at
deployment time

Finally, the API contract is used to protect APIs using our
micro API firewall. The runtime is fully optimized to be
deployed and run on any container orchestrator such as
Docker, Kubernetes or Amazon ECS. It can protect North- -
South and East-West microservices traffic. With minimal

latency and footprint, it can be deployed against hundreds

of API endpoints with minimal impact.

¢ API Firewall is configured in one-click from API
contract

¢ Contract becomes the allowlist for security

¢ No need to guess via Al which traffic is valid

¢ No policies to write

Write Swagger/OpenAPI definitions to specify the
behavior of your API. Security tools consume such
definitions for automatic detection and protection.

@ pdr.online

1 Broken object level authorization

2 Broken authentication

3 Broken object property-level authorization
4 Unrestricted resource consumption
5 Broken function level authorization

6 Unrestricted access to sensitive business flows

; Gouses

: AP Socurity
; TOP10
: —

Internet Engineering Task Force (IETF) M. Jones

Request for Comments: 7515 Microsoft
Category: Standards Track J. Bradley
ISSN: 2070-1721 Ping Identity
e Taomamwarmmamvmarsnmea Ma~nls TaAawv~~A TDOMmMDN
Interng Internet Engineering Task Force (IETF)
Request

Cateqor Request for Comments: 7516
99T categor: Internet Engineering Task Force (IETF)
ISSN: 2
ISSN: 2 Request for Comments: 7519

Category: Standards Track
ISSN: 2070-1721

.V 3

TAarmaAam~

M. Jones
Microsoft l
M. Jones
Microsoft
J. Bradley

Ping Identity

Abstrac N. Sakimura
Abstrac NRI
JSON Abat May 2015
. strac
Sign A JS
data stru
with also JSON JSON Web Token (JWT)
go JWKs £ 1
spec spec O ' Abstract
Web .
Sepa spec
—_— that JSON Web Token (JWT) is a compact, URL-safe means of representing
— Authy claims to be transferred between two parties. The claims in a JWT
JSON

are encoded as a JSON object that is used as the payload of a JSON
Web Signature (JWS) structure or as the plaintext of a JSON Web

Encryption (JWE) structure, enabling the claims to be digitally
signed or integrity protected with a Message Authentication Code

(¥ pdr.online (MAC) and/or encrypted.

Internet Engineering Task Force (IETF) Y. Sheffer

Request for Comments: 8725 Intuit
BCP: 225 D. Hardt
Updates: 7519

Category: Best Current Practice M. Jones
ISSN: 2070-1721 Microsoft

February 2020

JSON Web Token Best Current Practices

Abstract

JSON Web Tokens, also known as JWTs, are URL-safe JSON-based security
tokens that contain a set of claims that can be signed and/or
encrypted. JWTs are being widely used and deployed as a simple
security token format in numerous protocols and applications, both in
the area of digital identity and in other application areas. This
Best Current Practices document updates RFC 7519 to provide
actionable guidance leading to secure implementation and deployment
of JWTs.

EnCOded PASTE ATOKEN HERE DeCOded EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

eyJhbGci0iJIUzITNiIsInR5cCI6IkpXVCJ9. ey

J1c2VyIjoiZTcyZDFhMjZmNDBINGU4NzKk5Njcil {

L. "alg": "HS256",
CJBZW5hbnQi0iJkOGNmM2ZhMzAXxYTMOYzk20DUw "typ": "JWT"
MmE3MDUxYmZkYzBhOCIsImlhdCI6MTYyMDESMjY }
ONDkXNCwiZXhwIjoxNjIwMTk2MjQOO0TEBfQ.bnd

PAYLOAD: DATA
YFgq1sHD-
vH8h11ARD8MOUZgoALThQu7CURkuSVs (

"tenant”: "d8cf3fa381a34c968502a7051bfdcha8"”,

I "user": "e72d1a26f40e4e879967",

"iat": 1620192644914,
The base64-encoded "exp”: 1620196244914

header and payload,
along with the signature

VERIFY SIGNATURE
R } X HMACSHA256 (
The SIgnature is crucial base64UrlEncode(header) + "." +
to ensure the integrity of p——— basesauriencode(payload),
the header and payload SuperSecretHMACKey

) (0 secret base64 encoded

¢ pdr.online

BACKEND

¢ pdr.online

JWT header
JWT payload

A secret key to ensure
the HMAC is unique

5d672d79c15b1...e06b5924

I

The data to protect
with the HMAC

A cryptographic
HMAC function (e.g.
HMAC-SHA256)

The HMAC calculated
on the data with the
secret

, JWT header

JWT payload
JWT HMAC

JWT header

BACKEND JWT payload

v

A secret key to ensure
the HMAC is unique

&
Oﬁ 5d672d79c15b1...e06b5924
HMAC I i

The data to protect
with the HMAC

A cryptographic

HMAC function (e.g.

HMAC-SHA256)

The HMAC calculated
on the data with the
secret

JWT header

®

JWT payload
JWT HMAC

BACKEND

¢ pdr.online

The data or the secret
are different

5d672d79c15b1...e06b5924

JWT header

JWT payload

JWT HMAC

The input to the HMAC
is valid, so it was
generated with the
same data and secret

Decoded o omiommoscn

WEB APPLICATION SECURITY -

Meet JWT heartbreaker, a Burp
extension that finds thousands weak |
secrets automatically “

)2a7051bfdcba8”,

iup ",

T restaurant_name : burger master’
'

VERIFY SIGNATURE

HMACSHA256 (
base64UrlEncode(header) + "." +
Your secret should be more base64Ur1Encode (payload),
random, and should not be ® SuperSecretHMACkey
published on a Powerpoint slide) O secret base64 encoded

Bb1bee5f0428c0918",

ULNERABILITIES

Brute Forcing
HS256 is Possible:
The Importance of
Using Strong Keys
in Signing JWTs

Cracking a JWT signed with weak keys is possible
via brute force attacks. Learn how AuthO protects
against such attacks and alternative JWT signing
methods provided.

@ Prosper Otemuyiwa
Former AuthO Employe

oded

B ALGORITHI

4lg" : "HS256",

:ypll : IIJWTII

D: [

User": "1",

tenant"”: "d8cf3fa3081a34c968502a7051bfdcba8”,
restaurant”: "5e4fd699d6b84cd8b1bee5f0428¢c6918",
tenant_name"”: "The Burger Group”,
restaurant_name": "Burger Master”

Your secret should be more
random, and should not be
published on a Powerpoint slide

VERIFY SIGNATURE

HMACSHA256 (
base64UrlEncode(header) + "." +

base64UrlEncode(payload),

@ SuperSecretHMACkey

) (J secret base64 encoded

HMACs are not recommended

for security-sensitive JWTs

@ pdr.online

A private key belonging

to the service
JWT header

e06b5924...5d672d79¢c15b1

I

JWT header

JWT payload

JWT payload
JWT signature

A cryptographic The signature
The data to protect signing function (e.g. calculated on the data
with the signature RS256) with the private key

¢ pdr.online

A private key belonging

to the service
JWT header

e06b5924...5d672d79¢c15b1

I

JWT header

JWT payload

JWT payload
JWT signature

A cryptographic The signature
The data to protect signing function (e.g. calculated on the data
with the signature RS256) with the private key

The public key is uniquely
linked to the private key

JWT header
—_—
JWT payload S
JWT signature

The data is different || The data is the same and the
or the wrong signing || signature is created with the
key has been used expected private key

¢ pdr.online

Shared secrets for verifying JWT tokens are for use
within the boundaries of the application.

Most scenarios should use a public/private key
pair.

@ pdr.online

alg: none

@ pdr.online

Dec0d ed EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

{
"alg": "PS256",
"typ": "JWT", ®
"kid": "Ae42SFaYAECQQ"

}

PAYLOAD: DATA

{
"file_id": "d8cf3fa301a34c968502a7051bfdcPas8",
"sub": "5e4fd699d6b84cd8b1bee5f0428c0918",
"iss": "https://sts.restograde.com”,
"aud": "https://files.restograde.com",
"iat": 1521314123,
"exp": 1621314123

}

VERIFY SIGNATURE
RSAPSSSHA256 (
base64UrlEncode(header) + "." +

base64UrlEncode(payload),

=2

yxDgWk4VRLF4mE63BpwVNFACRCZCiU
ATZm
VEuby8E99kaThn980QIDAQAB

KIF89+6u7zNilOE1iSZOKICE1iIs89
9+ML
87akDERXF1PLhrhel+N1G+TPP288SE
J9r21nE4eT00X]

HEADER: ALGORITHM & TOKEN TYPE

o .o L (
The application uses signed ® "alg": "none”
1 1 "typ": "JWT",
JWTs and rejects JWTs with it hed2SFaYAECQ"
invalid signatures }

PAYLOAD: DATA

By using none as the signature,
the attacker can create a JWT
that is not signed

{
"file_id": "502a7051bfdcPa8d8cf3fa301a34c968", @
"sub": "5e4fd699d6b84cd8b1bee5f0428c0918",
"iss": "https://sts.restograde.com",
"aud": "https://files.restograde.com",
"iat": 1521314123,
"exp": 1621314123
}

An unsigned JWT can hold
arbitrary data, giving access to
arbitrary files on this system

Apache Pulsar bug allowed account takeovers in
certain configurations

Ben Dickson

Y OERSD

Software maintainers downplay real-world impact of JWT vulnerability

174
175

176
177
178
179
180

;- 4 HEEE ...on/src/main/java/org/apache/pulsar/broker/authentication/AuthenticationProviderToken.java LE,]

@@ -172,9 +172,7 @@ private static String validateToken(final String token) throws AuthenticationExc

@SuppressWarnings("unchecked")
private Jwt<?, Claims> authenticateToken(final
String token) throws AuthenticationException {
try {
- Jwt<?, Claims> jwt = Jwts.parser()

- .setSigningKey(validationKey)
- .parse(token);

if (audienceClaim != null) {
Object object =
jwt.getBody().get(audienceClaim);

172
173

174
175

176
177
178

@SuppressWarnings ("unchecked")
private Jwt<?, Claims> authenticateToken(final
String token) throws AuthenticationException {
try {
+ Jwt<?, Claims> jwt =
Jwts.parserBuilder().setSigningKey(validationKey).build()
.parseClaimsJws (token);

if (audienceClaim != null) {
Object object =
jwt.getBody().get(audienceClaim);

Jwts.parserBuilder()
.setSigningKey(key)
.build()

.parse

(VaVaVve'avavs

Q parse(String jwt) : Jwt JwtParser.parse(String jwt) : Jwt
@ parse(String jwt, JwtHandler<T> handler) : T

@ parseClaimsJws(String claimsJws) : Jws<Claims>

@ parseClaimsJwt(String claimsJwt) : Jwt<Header,Claims>
Q@ parsePlaintextJws(String plaintextJws) : Jws<String>

@ parsePlaintextJwt(String plaintextJwt) : Jwt<Header,..

@ pdr.online

VESS

Parses the specified compact serialized JWT string based on the builder's current configuration state and
returns the resulting JWT or JWS instance.

<p>

<p>This method returns a JWT or JWS based on the parsed string. Because it may be cumbersome to determine if it
is a JWT or JWS, or if the body/payload is a Claims or String with {@code instanceof} checks, the

{@link #parse(String, JwtHandler) parse(String,JwtHandler)} method allows for a type-safe callback approach that

may help reduce code or instanceof checks.</p>

@param jwt the compact serialized JWT to parse
@return the specified compact serialized JWT string based on the builder's current configuration state.

@throws MalformedJwtException if the specified JWT was incorrectly constructed (and therefore invalid).
Invalid
JWTs should not be trusted and should be discarded.

@throws SignatureException if a JWS signature was discovered, but could not be verified. IJWTs that fail

signature validation should not be trusted and should be discarded.

@throws ExpiredJwtException if the specified JWT is a Claims JWT and the Claims has an expiration time
before the time this method is invoked.

@throws IllegalArgumentException if the specified string is {@code null} or empty or only whitespace.

@see #parse(String, JwtHandler)

@see #parsePlaintextJwt(String)

@see #parseClaimsJwt(String)

@see #parsePlaintextJws(String)

X X X X K K X X X X X K K K X X X X X X ¥ X *

@see #parseClaimsJws(String)
*/
Jwt parse(String jwt) throws ExpiredJwtException, MalformedJwtException, SignatureException, IllegalArgumentException;

D Exploiting JWT vulnerabilities

Ben Knight Senior Security Consultant April 16, 2020

JSON Web Token Validation Bypass in AuthO
Authentication API

Ben discusses a JSON Web Token validation bypass issue disclosed to AuthO
in their Authentication API.

An token is actively malicious,
and should be detected and logged as a

security incident

@ pdr.online

USE WELL-DESIGNED AND UP-TO-DATE JWT LIBRARIES

Avoid using custom JWT validation code.

Rely on well-designed libraries
that handle JWTs safely.

@ pdr.online

The signature on the JWT This JWT is sent as part of the URL,
ensures it cannot be and used by the server to grant
tampered with. access to a certain file.

A JWT used to create a link to to access files without authentication

{

The sub claim represents a user, in

)) "file_id": "d8cf3fa301a34c968502a7051bfdc0a8",
this case the creator of the link

® "sub": "5e4fd699d6b84cd8blbee5f0428c0918",
i@ ''155": "https://sts.restograde.com",
"aud": "https://files.restograde.com",
"nbf": 1521314123, ?

"exp": 1621314123,

QP N =

The iss claim represents the issuer
of the token

0 ~N o U
—)

¥

The nbf claim represents the not before The aud claim represents the
time, and the exp claim the expiration time intended receiver of the token

¢ pdr.online

CLAIMS IN A JWT

* JWT tokens support reserved claims to hold token metadata
* All reserved claims are optional, but it is highly recommended to use them when needed
* The backend is responsible for checking these claims
 Verify if your library enforces this and make sure this is handled correctly

* Checks that need to be done by the backend
* The iss claim should match an expected issuer of JWT tokens
The aud claim indicates the intended target audience, which should match the backend
The sub claim represents a subject, useful for authorization decisions
The exp claim indicates the expiration date, which should be in the future
The nbf claim indicates the not before date, which should be in the past
The iat claim indicates the issued at date, which is mainly informative

* Apart from these claims, JWTs can also hold arbitrary claims

@ pdr.online

¢ pdr.online

DeCOded EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

How should you
use this JWT?

{
"alg": "HS256",
— " typ" "JWT"
}

PAYLOAD: DATA

"user": "e72d1a26f40e4e879967",

“tenant”: "d8cf3fa301a34c968502a7651bfdceas8",
"iat": 1620192644914,

"exp": 1620196244914

VERIFY SIGNATURE

HMACSHA256 (
base64UrlEncode(header) + "." +
base64UrlEncode(payload),
SuperSecretHMACKey

) (0 secret base64 encoded

HEADER: ALGORITHM & TOKEN TYPE HEADER: ALGORITHM & TOKEN TYPE

"alg": "RS256", " W, o "
n typll : lleTll , "alg § : 5 R82?6 ’
"kid": "NTVBOTU3MzBBOEUwNzhBQOVYxQUUYOUNEQUUXNjEyMw" typ": TIWTY,
} "kid": "NTVBOTU3MzBBOEUwNzhBQOVYxQUUYyOUNEQUUXNjEyMw"

}

JWTs should be explicitly typed. For an
access token, the typ should be set to

. . . PAYLOAD: DATA
at+jwt to avoid token type confusion

"iss": "https://sts.restograde.com/",

"sub": "autho|5ef6ef551b24320013b6c638", {

"aud": | "email”: "philippe@pragmaticwebsecurity.com",
“https://api.restograde.com", "email_verified": true,
"https://restograde.eu.auth®.com/userinfo” "iss": "https://sts.restograde.com/",

1, “sub": "auth@|5ef6ef551b24320013b6c638",

"iat": 1599250282,

"exp": 1599336682,

"azp": "DtsTliLAWQq3JXIwaoPQzl1l8vXhNI6qGnb",

"scope": "openid email read:reviews delete:reviews"”

"aud": "DtsTliLAWQq3JXIwaoPQz18vXhNI6éqGnb",
"iat": 1599250282,
"exp": 1599286282

[

Which one is the OAuth 2.0
access token and which one is
the OIDC identity token?

¢ pdr.online

EXPLICIT TYPING FOR JWTS

* JWTs are just a data representation and can be used for different scenarios
e Due to reserved claims, many JWTs contain similar values
* |t can become tricky to differentiate between JWTs from the same service
* OAuth 2.0 access tokens and OIDC identity tokens are issued by the same server
* While both tokens contain similar claims, they serve a completely different purpose
* An attacker could gain APl access by using an identity token, which should never happen

* JWT best practices recommend explicit JWT typing
* Instead of the generic JWT type, applications should use a custom type
* E.g., the recommendation for OAuth 2.0 access tokens is to use at+jwt

* Explicit typing is highly recommended for custom JWTs
* Only accept JWTs with proper typing and reject everything else

@ pdr.online

JWT TESTING GUIDE

* A JWT with a modified payload (and thus an invalid signature)
* A JWT signed with the wrong key

* AJWT wit
* AJWT wit
* AJWT wit
* AJWT wit
* AJWT wit
* AJWT wit
* AJWT wit
* AJWT wit
* AJWT wit

@ pdr.online

n alg: none

N alg: nOnE (to bypass case-sensitive checks)

n an HMAC using the public key as the secret

n the wrong algorithm (e.g., RS256 instead of P$256)
N the wrong typ header

n an invalid iss value

n an invalid aud value

N an exp timestamp in the past

N an nbf timestamp in the future

7 Ways to Avold JWT Security Pitfalls

Posted on December 22, 2021 by Mark Dolan

share: 1 E3 @3

Posted in

Dec 22nd 2021. Author: Dr. Philippe de Ryck, Pragmatic Web Security,

Use JWTs sensibly and write a battery of tests to
verify that your code/frameworks/libraries handle
JWT tokens the way you expect

@ pdr.online

What happens when
&

goes wrong?

@ pdr.online

Many APIs combine sensitive features and
mundane application logic into a single service.

Compartmentalization helps limit the impact of a
vulnerability.

@ pdr.online

KEY TAKEAWAYS

1 The best authorization policy is understandable and auditable

2 Analyze your APIs for data leakage and brute force attack vectors

3 Perimeter security cannot be your only defense

@ pdr.online

Reach out to discuss
how | can help you with security

https://pragmaticwebsecurity.com

