
DR. PHILIPPE DE RYCK

https://Pragmatic Web Security.com

THE REALITY OF BUILDING
SECURE APIS

Broken function level authorization5

Unrestricted resource consumption4

Broken object property-level authorization3

Broken authentication2

Broken object level authorization1

Unsafe consumption of APIs10

Improper inventory management9

Security misconfiguration8

Server-side request forgery7

Unrestricted access to sensitive business flows6

API Security

pdr.online https://portswigger.net/daily-swig/unpatched-bug-chain-poses-mass-account-takeover-threat-to-yunmai-weight-monitoring-app

https://dropbox.tech/security/bug-bounty-program-ssrf-attack

I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

SecAppDev organizer

https://pdr.online

I help developers with security

Hands-on in-depth security training

Advanced online security courses

Security advisory services

pdr.online

/in/PhilippeDeRyck

GRAB A COPY OF THE SLIDES ...

Website icons created by Uniconlabs - Flaticon

https://infosec.exchange/@PhilippeDeRyck

https://pragmaticwebsecurity.com/talks

Broken function level authorization5

Unrestricted resource consumption4

Broken object property-level authorization3

Broken authentication2

Broken object level authorization1

Unsafe consumption of APIs10

Improper inventory management9

Security misconfiguration8

Server-side request forgery7

Unrestricted access to sensitive business flows6

API Security

pdr.online Perimeter / VPC / Firewall / WAF / …

pdr.online
Photo by Robert V. Ruggiero on Unsplash

Photo by Thula Na on Unsplash

pdr.online Perimeter / VPC / Firewall / WAF / …

pdr.online Photo by Shalone Cason on Unsplash

pdr.online Perimeter / VPC / Firewall / WAF / …

1 Request with URL parameter

localhost

This attack is known as Server-Side
Request Forgery (SSRF)

?
pdr.online

How does SSRF happen?

pdr.online

1 Request with a URL as data

4 Response

2 Load resource with URL

3 Response

SSRF occurs in all kinds of services,
such as image loading, link

previews, webhooks, proxies, ...

An SSRF vulnerability can lead to
requests being sent to localhost,
internal hosts, token services, or

cloud security services ...

pdr.online

https://mycdn.example.com/image.png

Valid input

https://127.0.0.1:8080

Invalid input

pdr.online https://cheatsheetseries.owasp.org/assets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet_Orange_Tsai_Talk.pdf

pdr.online

SSRF AT DROPBOX

https://dropbox.tech/security/bug-bounty-program-ssrf-attack

pdr.online

FIXING SSRF AT DROPBOX

https://dropbox.tech/security/bug-bounty-program-ssrf-attack

pdr.online

FIXING SSRF BY REMOVING AMBIGUITY ON THE SERVER

Accept a URL as input on the server and immediately transform it into a unambiguous value

1
2
3
4
5

const input = req.body.url
// Transform the input into a single representation
const u = new URL(input)
// Construct a unambiguous safe URL to use in the application
const safeUrl = new URL(`https://${u.host}${u.pathname}${u.search}`)

The server-side code interprets the
input URL only once, leaving no

room for confusion between two
different URL parsers

Fix any part of the URL that is not
supposed to be controlled by the

client (e.g., the scheme)

The safe URL can now be used to
check against an allow list of URLs

pdr.online

The code handling the URL input

1
2
3
4
5
6
7
8
9
10
11
12
13
14

function saveUrl() {
 let strUrl = document.getElementById("cb").value;
 let url = new URL(strUrl);

 let urlData = {
 "scheme": url.protocol,
 "hostname": url.hostname,
 "port": url.port,
 "path": url.pathname,
 "params": url.search
 }

 // Send this data to the backend for processing
}

FIXING SSRF BY REMOVING AMBIGUITY ON THE CLIENT

The server-side code only accepts a
decomposed URL, which enables

strict input validation on each
component, which automatically

removes all ambiguity

The data received by the API

1
2
3
4
5
6
7

{
 "scheme":"https:",
 "hostname":"restograde.com",
 "port":"",
 "path":"/callback",
 "params":"",
}

The client accepts a full URL in the UI, and
then parses it in the browser before

sending it to the backend

pdr.online

PROTECT AGAINST SSRF

SSRF vulnerabilities often occur when there's ambiguity in
matching against allow-lists.

Ensure the data used for server-side requests is unambiguous
and trustworthy according to your security policy.

Broken function level authorization5

Unrestricted resource consumption4

Broken object property-level authorization3

Broken authentication2

Broken object level authorization1

Unsafe consumption of APIs10

Improper inventory management9

Security misconfiguration8

Server-side request forgery7

Unrestricted access to sensitive business flows6

API Security

“
“

Account takeover through ‘forgot
password’ functionality.

The victim will get an email with
a unique 6 digit code that allows

to reset the password.

https://fortbridge.co.uk/research/mass-account-takeover-yunmai/

pdr.online

Breaking authentication

pdr.online

AVOID LEAKING INFORMATION

APIs often (unknowingly) leak information that
enables attacks such as username enumeration.

Carefully analyze your APIs for explicit and implicit
data leakage.

pdr.online

IMPLEMENT RATE LIMITING

Many endpoints fail to implement rate limiting, which allows
attackers to launch brute force attacks. Examples include SMS

code prompts, reset tokens, and authentication forms.

Implement rate limiting to minimize the attacker's ability to
abuse these endpoints.

pdr.online

MITIGATE GUESSING ATTACKS

Attackers often abuse unsigned values
to implement guessing attacks.

Mitigation techniques against guessing attacks include
using long random identifiers (e.g., a UUID) or using
signed values that allow the detection of tampering.

Broken function level authorization5

Unrestricted resource consumption4

Broken object property-level authorization3

Broken authentication2

Broken object level authorization1

Unsafe consumption of APIs10

Improper inventory management9

Security misconfiguration8

Server-side request forgery7

Unrestricted access to sensitive business flows6

API Security

“ “Our accounts eventually got locked
and hidden for more verification

requirements. We tested retrieving
user data while our account was

locked, and it still worked.

https://blog.securityevaluators.com/
reverse-engineering-bumbles-api-a2a0d39b3a87

“
“

It's possible to view
deleted fleets via

Twitter's API endpoint,
to view existing fleets

without giving the
poster a read

notification and you can
do both without being

logged into Twitter.

https://twitter.com/donk_enby/status/1329935540049817600

pdr.online

THE CLIENT IS IRRELEVANT FOR SECURITY

The attack surface of an API
consists of all accessible endpoints,

regardless of how and if they are used by the client

?
pdr.online

Are client-side controls and validation
procedures really useless?

pdr.online

THE CLIENT IS IRRELEVANT TO ENFORCE SECURITY

Strict security controls on the client make your API
security controls an effective detection mechanism

for malicious behavior

Broken function level authorization5

Unrestricted resource consumption4

Broken object property-level authorization3

Broken authentication2

Broken object level authorization1

Unsafe consumption of APIs10

Improper inventory management9

Security misconfiguration8

Server-side request forgery7

Unrestricted access to sensitive business flows6

API Security

pdr.online

Explicitly checking for conditions that are not allowed is a bad practice

1
2
3
4
5
6
7

public void editRestaurant(long id, Restaurant restaurant) {
 if(user.hasRole("FOH_MANAGER") || user.hasRole("EXEC_CHEF")) {
 throw new AuthorizationException(":(");
 }

 restaurantData.update(id, restaurant);
};

Authorization policies should start
from a "deny-by-default" position to
avoid bypasses. Missing a role in this

list will cause an authorization bypass.

pdr.online

Denying everything except the expected scenario is a best practice

1
2
3
4
5
6
7

public void editRestaurant(long id, Restaurant restaurant) {
 if(user.hasRole("OWNER") || user.hasRole("GENERAL_MANAGER")) {
 restaurantData.update(id, restaurant);
 }

 throw new AuthorizationException(":(");
};

A mistake in a "deny-by-default" policy
will cause a functional problem, but

never an authorization bypass

pdr.online

Automatically enforcing role-based access control on endpoints in Spring

1
2
3
4

@PreAuthorize("hasRole('OWNER') or hasRole('GENERAL_MANAGER')")
public void editRestaurant(long id, Restaurant restaurant) {
 restaurantData.update(id, restaurant);
};

Role-based access control (RBAC) is
very intuitive and widely used, as

evidenced by framework-level support
for enforcing authorization.

pdr.online

Automatically enforcing role-based access control on endpoints in Spring

1
2
3
4
5
6
7

@PreAuthorize("hasRole('OWNER')
 or hasRole('GENERAL_MANAGER')
 or hasRole('CONTENT_MODERATOR')
 or hasRole('ADMIN')")
public void editRestaurant(long id, Restaurant restaurant) {
 restaurantData.update(id, restaurant);
};

RBAC is hard to manage and maintain,
and often leads to a problem known as

role explosion

pdr.online

Permission-based security decouples the code from the authorization policy

1
2
3
4

@PreAuthorize("hasPermission('EDIT_RESTAURANT')")
public void editRestaurant(long id, Restaurant restaurant) {
 restaurantData.update(id, restaurant);
};

Using permissions decouples the authorization
policy from the implementation.

Auditing this code becomes straightforward and
does not require specific knowledge of the

authorization policy.

pdr.online

FOH_MANAGER

OWNER

GENERAL_MANAGER

CONTENT_MODERATOR

DELETE_RESTAURANTVIEW_RESTAURANT EDIT_RESTAURANT

ADMIN

PermissionsRoles

?
pdr.online

Hmm, that wasn't so hard?

pdr.online

Editing a restaurant

1
2

PATCH /restaurants/1 HTTP/1.1
{ name: … }

Editing a restaurant

1
2

PATCH /restaurants/2 HTTP/1.1
{ name: … }

Without object-level access
control, a user with the edit
permission can change any

restaurant

Permission-based security decouples the code from the authorization policy

1
2
3
4

@PreAuthorize("hasPermission('EDIT_RESTAURANT')")
public void editRestaurant(long id, Restaurant restaurant) {
 restaurantData.update(id, restaurant);
};

“ “he could query for someone else's phone
number and the API would simply send back a
response containing the other person's data.

“ “the security flaw allowed anyone who was logged in to access,
modify and delete the personal data of business owners by

modifying the part of the web address that contains the
taxpayers’ application number.

https://techcrunch.com/2022/12/02/florida-tax-bug-data-exposed/

pdr.online

Object-level access control is often challenging to implement

1
2
3
4
5
6
7
8
9

@PreAuthorize("hasPermission('EDIT_RESTAURANT')")
public void editRestaurant(long id, Restaurant restaurant) {
 Restaurant orig = restaurantData.get(id);
 if(user.hasRole("OWNER") && !orig.getOwner().equals(user)) {
 throw new AuthorizationException(":(");
 }

 restaurantData.update(id, restaurant);
};

A permission check only
allows authorized users to

access this endpoint

Certain roles require
additional restrictions,

such as restaurant
ownership

Policies like these are
impossible to audit for

security

Violation of the deny-by-
default principle, and

transforming the code is
a lot harder this time …

pdr.online

BOLA in practice

pdr.online

A "centralized" policy results in a clear and auditable authorization policy

1
2
3
4
5
6
7
8
9

public void editRestaurant(long id, Restaurant restaurant) {
 Restaurant orig = restaurantData.get(id);
 if(policy.canEditRestaurant(user, orig)) {
 restaurantData.update(id, restaurant);
 }
 else {
 throw new AuthorizationException(":(");
 }
}

The code is easy to audit, without
specific knowledge of the detailed

authorization policy

Centralizing the authorization logic encapsulates complexity in a single location

1
2
3
4
5
6
7
8

public static boolean canEditRestaurant(User u, Restaurant r) {
 // Admins are always allowed
 if(isAdmin(u)) return true;
 // Owners can only update their own restaurant
 if(r.getOwner().equals(u)) return true;

 return false;
}

A single place to implement complex
authorization logic makes things

more manageable and easy to control

Note the deny-by-default approach

pdr.online

Ask the Policy Engine to
make an authorization

decision

A "centralized" policy results in a clear and auditable authorization policy

1
2
3
4
5
6
7

public void editRestaurant(long id, Restaurant restaurant) {
 Restaurant orig = restaurantData.get(id);
 if(policy.canEditRestaurant(user, orig)) {
 restaurantData.update(id, restaurant);
 }
 else {
 throw new AuthorizationException(":(");
 }
}

@PhilippeDeRyck

Ask the Policy Engine to
make an authorization

decision

Open Policy Agent

https://www.openpolicyagent.org/

pdr.online

CENTRALIZE COMPLEX AUTHORIZATION LOGIC

Complex authorization logic should not be
scattered throughout the code, but is best defined
in a clear and understandable authorization policy

pdr.online

EMPOWER AUDITABILITY

Simplify the auditing of your authorization policy
by making authorization logic explicit, even when

endpoints have no specific authorization
requirements.

Broken function level authorization5

Unrestricted resource consumption4

Broken object property-level authorization3

Broken authentication2

Broken object level authorization1

Unsafe consumption of APIs10

Improper inventory management9

Security misconfiguration8

Server-side request forgery7

Unrestricted access to sensitive business flows6

API Security

“
“

To reset a password,
Grindr sends the user an

email with a clickable
link containing an

account password reset
token.

Grindr’s password reset
page was leaking

password reset tokens to
the browser.

https://techcrunch.com/2020/10/02/grindr-account-hijack-flaw/

pdr.online

The Java Spring endpoint returning users

1
2
3
4
5

@RequestMapping(path = "/online/users", method = GET, produces = "application/json")
public ResponseEntity<Object> getOnlineUsers() {
 List<User> users = UserService.getOnlineUsers();
 return new ResponseEntity<Object>(users, HttpStatus.OK);
}

The User data class

1
2
3
4
5
6
7
8
9
10
11

public class User {
 private String id, name, address;
 …
 public String getName() {
 return name;
 }

 public String getAddress() {
 return address;
 }
}

Data fields are automatically
translated to JSON, even when they

are not supposed to be exposed

pdr.online

The Java Spring endpoint returning users

1
2
3
4
5

@RequestMapping(path = "/online/users", method = GET, produces = "application/json")
public ResponseEntity<Object> getOnlineUsers() {
 List<User> users = UserService.getOnlineUsers();
 return new ResponseEntity<Object>(users, HttpStatus.OK);
}

The User data class

1
2
3
4
5
6
7
8
9
10
11
12

public class User {
 private String id, name, address;
 …
 public String getName() {
 return name;
 }

 @JsonIgnore
 public String getAddress() {
 return address;
 }
}

Annotations can be used to avoid
including sensitive fields in JSON
responses, but this approach is

impossible at scale and violates the
"deny-by-default" best practice

pdr.online

The Java Spring endpoint returning users

1
2
3
4
5

@RequestMapping(path = "/online/users", method = GET, produces = "application/json")
public ResponseEntity<Object> getOnlineUsers() {
 List<User> users = UserService.getOnlineUsers();
 return new ResponseEntity<Object>(users.stream().map(PublicUserInfo::new), HttpStatus.OK);
}

The PublicUserInfo DTO class

1
2
3
4
5
6
7
8
9
10
11
12

public class PublicUserInfo {
 private String id, name;

 public PublicUserInfo(User user) {
 this.setId(user.getId());
 this.setName(user.getName());
 }
 …
 public String getName() {
 return name;
 }
}

The DTO class only defines fields that
are supposed to be exposed.

A User object is never directly
exposed to the client.

pdr.online

AVOID SENSITIVE DATA EXPOSURE

Avoid directly returning internal application data, as
this often results in the exposure of sensitive data.

Use strict schemas or DTOs in combination with a well-
defined OpenAPI specification of your API.

?
pdr.online

If an API automatically exposes data, does
it also automatically accept data?

pdr.online

The Java Spring endpoint returning users

1
2
3
4

@RequestMapping(path = "/user/{id}", method = PATCH, consumes = "application/json")
public void updateUser(String id, @RequestBody User user) {
 UserService.updateUser(id, user);
}

A legitimate request payload to update the user's name

1
2
3

{
 "name": "Dr. Phil"
}

Updates the DB with new field values
for the user with the given ID

A malicious request payload to update restricted fields

1
2
3
4

{
 "name": ”Philippe becomes admin",
 "role": "admin"
}

The User data class

1
2
3
4
5
6
7
8
9
10
11

public class User {
 private String id, name, role;
 …
 public void setName(String name) {
 this.name = name;
 }

 public String setRole(String role) {
 this. role = role;
 }
}

pdr.online

The Java Spring endpoint returning users

1
2
3
4

@RequestMapping(path = "/user/{id}", method = PATCH, consumes = "application/json")
public void updateUser(String id, @RequestBody User user) {
 UserService.updateUser(id, user);
}

The User data class

1
2
3
4
5
6
7
8
9
10
11
12

public class User {
 private String id, name, role;
 …
 public void setName(String name) {
 this.name = name;
 }

 @JsonProperty(access = Access.READ_ONLY)
 public String setRole(String role) {
 this. role = role;
 }
}

Annotations can be used to avoid
populating sensitive fields with JSON data,
but this approach is impossible at scale and
violates the "deny-by-default" best practice

pdr.online

The Java Spring endpoint returning users

1
2
3
4

@RequestMapping(path = "/user/{id}", method = PATCH, consumes = "application/json")
public void updateUser(String id, @RequestBody UpdateUserInfo user) {
 UserService.updateUser(id, user);
}

The UpdateUserInfo DTO class

1
2
3
4
5
6
7
8
9
10
11

public class UpdateUserInfo {
 private name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

The DTO class only defines fields that
are supposed to be populated.

A User object is never directly
accepted as input from the client.

pdr.online

VERIFY YOUR APIS FOR MASS ASSIGNMENT

Avoid directly transforming incoming data into model objects, as
this often results in the accidental writing of internal values.

Use strict schemas or DTOs in combination with a well-defined
OpenAPI specification of your API.

?
pdr.online

How can we address BOPLA issues?

An example of a YAML-based OpenAPI contract

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

openapi: 3.0.0
paths:
 /user/{id}:
 patch:
 summary: Update user information
 parameters:
 - name: id
 in: path
 required: true
 schema:
 type: string
 requestBody:
 required: true
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/UpdateUserInfo'
 responses:
 '200':
 description: User information updated successfully
components:
 schemas:
 UpdateUserInfo:
 type: object
 required:
 - name
 properties:
 name:
 type: string

The contract specifies the expected URL
parameters and body parameters, along

with the content type.

The contract specifies different response
codes, along with their content type and

contents (if relevant)

The contract contains human readable
explanations, making it the perfect starting

point for generating documentation

https://engineeringblog.yelp.com/2020/01/automated-idor-discovery-through-stateful-swagger-fuzzing.html
https://www.microsoft.com/en-us/research/blog/restler-finds-security-and-reliability-bugs-through-automated-fuzzing/

https://42crunch.com/api-security-platform/
https://developers.cloudflare.com/api-shield/security/schema-validation//

pdr.online

USE SWAGGER/OPENAPI DEFINITIONS FOR SECURITY

Write Swagger/OpenAPI definitions to specify the
behavior of your API. Security tools consume such

definitions for automatic detection and protection.

Broken function level authorization5

Unrestricted resource consumption4

Broken object property-level authorization3

Broken authentication2

Broken object level authorization1

Unsafe consumption of APIs10

Improper inventory management9

Security misconfiguration8

Server-side request forgery7

Unrestricted access to sensitive business flows6

API Security

pdr.online

https://tools.ietf.org/html/rfc8725

pdr.online

The base64-encoded
header and payload,

along with the signature

The signature is crucial
to ensure the integrity of
the header and payload

pdr.online

SEC
RET

JWT header

The data to protect
with the HMAC

A cryptographic
HMAC function (e.g.

HMAC-SHA256)

The HMAC calculated
on the data with the

secret

A secret key to ensure
the HMAC is unique

5d672d79c15b1…e06b59245d672d79c15b1…e06b5924
JWT payload

JWT header

JWT payload

JWT HMAC

JWT header

JWT payload

JWT HMAC

pdr.online

SEC
RET

JWT header

The data to protect
with the HMAC

A cryptographic
HMAC function (e.g.

HMAC-SHA256)

The HMAC calculated
on the data with the

secret

A secret key to ensure
the HMAC is unique

5d672d79c15b1…e06b59245d672d79c15b1…e06b5924
JWT payload

JWT header

JWT payload

JWT HMAC

JWT header

JWT payload

JWT HMAC

SEC
RET

The input to the HMAC
is valid, so it was

generated with the
same data and secret

The data or the secret
are different

5d672d79c15b1…e06b5924

Your secret should be more
random, and should not be

published on a Powerpoint slide

https://lab.wallarm.com/meet-jwt-heartbreaker-a-burp-extension-that-finds-thousands-weak-secrets-automatically/

Your secret should be more
random, and should not be

published on a Powerpoint slide

https://auth0.com/blog/brute-forcing-hs256-is-possible-the-importance-of-using-strong-keys-to-sign-jwts/

A key of the same size as the hash output
(for instance, 256 bits for "HS256") or

larger MUST be used with this algorithm.

!
pdr.online

HMACs are not recommended
for security-sensitive JWTs

pdr.online

JWT header

The data to protect
with the signature

A cryptographic
signing function (e.g.

RS256)

The signature
calculated on the data

with the private key

A private key belonging
to the service

5d672d79c15b1…e06b5924e06b5924…5d672d79c15b1
JWT payload

JWT header

JWT payload

JWT signature

JWT header

JWT payload

JWT signature

PRI
VAT

E

pdr.online

JWT header

The data to protect
with the signature

A cryptographic
signing function (e.g.

RS256)

The signature
calculated on the data

with the private key

A private key belonging
to the service

5d672d79c15b1…e06b5924e06b5924…5d672d79c15b1
JWT payload

JWT header

JWT payload

JWT signature

JWT header

JWT payload

JWT signature

The public key is uniquely
linked to the private key

The data is the same and the
signature is created with the

expected private key

The data is different
or the wrong signing

key has been used

PRI
VAT

E

PUB
LIC

pdr.online

USE THE RIGHT JWT SIGNATURE SCHEME

Shared secrets for verifying JWT tokens are for use
within the boundaries of the application.

Most scenarios should use a public/private key
pair.

pdr.online

alg: none

pdr.online

By using none as the signature,
the attacker can create a JWT

that is not signed

An unsigned JWT can hold
arbitrary data, giving access to
arbitrary files on this system

The application uses signed
JWTs and rejects JWTs with

invalid signatures

https://portswigger.net/daily-swig/apache-pulsar-bug-allowed-account-takeovers-in-certain-configurations

https://github.com/apache/pulsar/pull/9172/commits/94247dac93542bbcb45fb7104f7204363aad7441

pdr.online

https://github.com/jwtk/jjwt/blob/master/api/src/main/java/io/jsonwebtoken/JwtParser.java

pdr.online

Exploiting JWT vulnerabilities

“
“

The Authentication API
prevented the use of

"alg: none" with a case
sensitive filter. This
means that simply

capitalising any letter
("alg: nonE"), allowed
tokens to be forged.

https://insomniasec.com/blog/auth0-jwt-validation-bypass

!
pdr.online

An alg:none token is actively malicious,
and should be detected and logged as a
security incident

pdr.online

USE WELL-DESIGNED AND UP-TO-DATE JWT LIBRARIES

Avoid using custom JWT validation code.

Rely on well-designed libraries
that handle JWTs safely.

pdr.online

A JWT used to create a link to to access files without authentication

1
2
3
4
5
6
7
8

{
 "file_id": "d8cf3fa301a34c968502a7051bfdc0a8",
 "sub": "5e4fd699d6b84cd8b1bee5f0428c0918",
 "iss": "https://sts.restograde.com",
 "aud": "https://files.restograde.com",
 "nbf": 1521314123,
 "exp": 1621314123,
}

The sub claim represents a user, in
this case the creator of the link

The iss claim represents the issuer
of the token

The nbf claim represents the not before
time, and the exp claim the expiration time

The aud claim represents the
intended receiver of the token

The signature on the JWT
ensures it cannot be

tampered with.

This JWT is sent as part of the URL,
and used by the server to grant

access to a certain file.

pdr.online

CLAIMS IN A JWT

• JWT tokens support reserved claims to hold token metadata
• All reserved claims are optional, but it is highly recommended to use them when needed
• The backend is responsible for checking these claims
• Verify if your library enforces this and make sure this is handled correctly

• Checks that need to be done by the backend
• The iss claim should match an expected issuer of JWT tokens
• The aud claim indicates the intended target audience, which should match the backend
• The sub claim represents a subject, useful for authorization decisions
• The exp claim indicates the expiration date, which should be in the future
• The nbf claim indicates the not before date, which should be in the past
• The iat claim indicates the issued at date, which is mainly informative

• Apart from these claims, JWTs can also hold arbitrary claims

pdr.online

How should you
use this JWT?

pdr.online

Which one is the OAuth 2.0
access token and which one is

the OIDC identity token?

JWTs should be explicitly typed. For an
access token, the typ should be set to
at+jwt to avoid token type confusion

pdr.online

EXPLICIT TYPING FOR JWTS

• JWTs are just a data representation and can be used for different scenarios
• Due to reserved claims, many JWTs contain similar values
• It can become tricky to differentiate between JWTs from the same service

• OAuth 2.0 access tokens and OIDC identity tokens are issued by the same server
• While both tokens contain similar claims, they serve a completely different purpose
• An attacker could gain API access by using an identity token, which should never happen

• JWT best practices recommend explicit JWT typing
• Instead of the generic JWT type, applications should use a custom type
• E.g., the recommendation for OAuth 2.0 access tokens is to use at+jwt

• Explicit typing is highly recommended for custom JWTs
• Only accept JWTs with proper typing and reject everything else

pdr.online

JWT TESTING GUIDE

• A JWT with a modified payload (and thus an invalid signature)
• A JWT signed with the wrong key
• A JWT with alg: none
• A JWT with alg: nOnE (to bypass case-sensitive checks)
• A JWT with an HMAC using the public key as the secret
• A JWT with the wrong algorithm (e.g., RS256 instead of PS256)
• A JWT with the wrong typ header
• A JWT with an invalid iss value
• A JWT with an invalid aud value
• A JWT with an exp timestamp in the past
• A JWT with an nbf timestamp in the future

https://42crunch.com/7-ways-to-avoid-jwt-pitfalls/

pdr.online

FOLLOW JWT BEST CURRENT PRACTICES

Use JWTs sensibly and write a battery of tests to
verify that your code/frameworks/libraries handle

JWT tokens the way you expect

pdr.online

What happens when
💩

goes wrong?

pdr.online

COMPARTMENTALIZE YOUR APIS

Many APIs combine sensitive features and
mundane application logic into a single service.

Compartmentalization helps limit the impact of a
vulnerability.

pdr.online

The best authorization policy is understandable and auditable1

Analyze your APIs for data leakage and brute force attack vectors2

Perimeter security cannot be your only defense3

KEY TAKEAWAYS

Thank you!

https://pragmaticwebsecurity.com

Reach out to discuss
how I can help you with security

