
DR. PHILIPPE DE RYCK

https://Pragmatic Web Security.com

THE PAST, PRESENT, AND FUTURE OF
CROSS-SITE REQUEST FORGERY



?
pdr.online

WTF is CSRF?



pdr.online

https://app.restograde.com/

app.restograde.com: authnState

3 Send POST request to create review

4 Response

app.restograde.com

Login to RestogradeCreate new review

A legitimate request to the Restograde backend

1
2
3
4

POST /newReview HTTP/1.1
Cookie: ...authnState...

restaurant=1&title=…&content=…

3

1 Login to Restograde

2 Response + cookie

SETTING THE SCENE FOR CROSS-SITE REQUEST FORGERY (CSRF)



pdr.online

https://maliciousfood.com/

app.restograde.com: authnState

A FORM-BASED CSRF ATTACK

about:blank
1 Send POST request to create review

2 Response
app.restograde.com

A forged request to the Restograde backend

1
2
3
4

POST /newReview HTTP/1.1
Cookie: ...authnState...

restaurant=1&title=…&content=…

1

app.restograde.com
about:blank

A hidden iframe on 
a "legitimate" page



pdr.online

Traditional CSRF in action



pdr.online

CSRF ATTACKS AFFECT TRADITIONAL SERVER-SIDE APPS

CSRF attacks exist because the browser automatically 
attaches cookies to outgoing requests.

CSRF used to be a real problem for traditional 
server-side applications



I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

Auth0 Ambassador

SecAppDev organizer

https://pdr.online

I help developers with security

Hands-on in-depth security training

Advanced online security courses

Security advisory services



pdr.online

/in/PhilippeDeRyck

GRAB A COPY OF THE SLIDES ...

Website icons created by Uniconlabs - Flaticon

https://infosec.exchange/@PhilippeDeRyck

https://pragmaticwebsecurity.com/talks



?
pdr.online

How do we stop CSRF attacks?



pdr.online

https://app.restograde.com/

app.restograde.com: authnState

3 Send POST request to create review

4 HTML page stating that the review was created

app.restograde.com

Login to RestogradeCreate new review

A legitimate request to the Restograde backend

1
2
3
4

POST /newReview HTTP/1.1
Cookie: ...authnState...

restaurant=1&title=…&csrf_token=530…ea8

3

1 Login to Restograde

2 Response with secret + cookie

CSRF DEFENSE: SYNCHRONIZER TOKENS

The hidden CSRF token 
is submitted as part of 

the form data

A CSRF token in a hidden form field

1
2

<input type="hidden" name="csrf_token" value="53…a8">
<input type="text" name="title" />

2



pdr.online

https://maliciousfood.com/

app.restograde.com: authnState

CSRF DEFENSE: SYNCHRONIZER TOKENS

about:blank
1 Send POST request to create review

2 Vive la resistance. What's the secret?
app.restograde.com

A forged request to the Restograde backend

1
2
3
4
5

POST /newReview HTTP/1.1
Origin: https://maliciousfood.com
Cookie: ...authnState...

restaurant=1&title=…&content=…

1

app.restograde.com
about:blank

The Same-Origin Policy prevents a 
malicious page from stealing a 

legitimate token from a page from 
app.restograde.com



pdr.online

SYNCHRONIZER TOKENS ARE A GOOD CSRF DEFENSE

By requiring the browser to submit a secret token 
along with the request data, the backend can 

identify and reject illegitimate requests.



!
pdr.online

The use of synchronizer tokens requires 
explicit implementation effort and is often 
forgotten or omitted



pdr.online

Here's an illustration 
representing the concept 
of 'SameSite' cookies in 
the context of internet 
browsing.



pdr.online

https://app.restograde.com/

app.restograde.com: authnState

3 Send POST request to create review

4 Response

app.restograde.com

Login to RestogradeCreate new review

A legitimate request to the Restograde backend

1
2
3
4

POST /newReview HTTP/1.1
Cookie: ...authnState...

restaurant=1&title=…&content=…

3

1 Login to Restograde

2 Response + cookie

CSRF DEFENSE: SAMESITE COOKIES

Setting a SameSite cookie

1 Set-Cookie: SessionID=4140de5…b00361a; SameSite

2

This cookie is now marked 
as SameSite only



pdr.online

https://maliciousfood.com/

app.restograde.com: authnState

CSRF DEFENSE: SAMESITE COOKIES

1 Send POST request to create review

2 No cookie? No review!
app.restograde.com

A forged request to the Restograde backend

1
2
3
4

POST /newReview HTTP/1.1
Cookie: ...authnState...

restaurant=1&title=…&content=…

1

This cookie is now marked 
as SameSite only



pdr.online

SAMESITE COOKIES NEUTRALIZE CSRF

SameSite cookies are not included on cross-site requests. 

The attacker can still send the request, but cookie-based 
authentication state will not be included by the browser.



pdr.online https://duo.com/decipher/google-rolls-out-samesite-cookie-changes-to-chrome



pdr.online

SameSite cookies in action



pdr.online

CHROME TREATS COOKIES AS SAMESITE BY DEFAULT

Since 2020, Chrome treats cookies as SameSite, unless 
they set SameSite=None.

Note that other browsers do not, so you still need to 
set the SameSite flag to mitigate CSRF attacks.



?
pdr.online

What about APIs?



“ “Zhu also investigated whether other sites’ authenticated 
endpoints similarly accepted POSTs with content-type: 

text/plain, despite expecting JSON.

https://portswigger.net/daily-swig/vulnerability-in-dating-site-okcupid-could-be-used-to-trick-users-into-liking-or-messaging-other-profiles



pdr.online

https://app.restograde.com/

app.restograde.com: authnState

3 Send POST request to create review

4 Response

app.restograde.com

Login to RestogradeCreate new review

A legitimate request to the Restograde backend

1
2
3
4

POST /reviews HTTP/1.1
Cookie: ...authnState...

{"restaurant":1,"title":"…","content":"…"}

3

1 Login to Restograde

2 Response + cookie

SETTING THE SCENE FOR CROSS-SITE REQUEST FORGERY (CSRF)



pdr.online

https://maliciousfood.com/

app.restograde.com: authnState

A FORM-BASED CSRF ATTACK

about:blank
1 Send POST request to create review

2 Response
app.restograde.com

A forged request to the Restograde API

1
2
3
4

POST /reviews HTTP/1.1
Cookie: ...authnState...

{"restaurant":1,"title":"…","content":"…"}

1

app.restograde.com
about:blank

A hidden iframe on 
a "legitimate" page



pdr.online

https://maliciousfood.com/

app.restograde.com: authnState

A FETCH-BASED CSRF ATTACK

1 Send POST request to create review

2 Response
app.restograde.com

A forged request to the Restograde backend

1
2
3
4

POST /reviews HTTP/1.1
Cookie: ...authnState...

{"restaurant":1,"title":"…","content":"…"}

1

Malicious JS code running 
on a "legitimate" page



pdr.online

Abusing APIs with CSRF



!
pdr.online

SameSite cookies also prevent CSRF 
against APIs



pdr.online

COOKIE-BASED APIS NEED TO WORRY ABOUT CSRF

APIs that rely on cookies are less common, but they 
definitely exist (e.g., OAuth BFFs).

APIs relying on cookies need to ensure they 
properly mitigate CSRF attacks.



pdr.online

SameSite cookies effectively mitigate 
Cross-Site Request Forgery attacks

SameSite cookies cannot protect against 
Cross-Origin (but Same-Site) Request Forgery



pdr.online

From Cross-Site to Cross-Origin 
Request Forgery



?
pdr.online

Why would we ever give an attacker 
control over a subdomain?



pdr.online



“ “
Attackers can serve malicious content to hijack user's 

sessions by abusing OAuth 2.0 redirect URIs

https://portswigger.net/daily-swig/rampant-cname-misconfiguration-leaves-thousands-of-organizations-open-to-subdomain-takeover-attacks-nbsp-research



pdr.online

LOSING CONTROL OF A SUBDOMAIN

app.restograde.com

api.restograde.com

old.restograde.com

Restograde DNS records

CNAME

CNAME

CNAME

a.cloud.example.com

b.cloud.example.com

c.cloud.example.com

a.cloud
.example.com

b.cloud
.example.com

c.cloud
.example.com

CNAME-based 
configurations are 
common in cloud 

deployments. 

There is nothing wrong 
with this configuration as 
long as all cloud servers 

remain active



pdr.online

LOSING CONTROL OF A SUBDOMAIN

app.restograde.com

api.restograde.com

old.restograde.com

Restograde DNS records

CNAME

CNAME

CNAME

a.cloud.example.com

b.cloud.example.com

c.cloud.example.com

a.cloud
.example.com

b.cloud
.example.com

c.cloud
.example.com

c.cloud.example.com



pdr.online

CSRF IS DEAD, LONG LIVE CORF!

While Cross-Site Request Forgery may be on the 
way out, Cross-Origin (but same-site) Request 

Forgery is definitely gaining traction. 



?
pdr.online

Please tell me you're making this up?



“ “
All GET- and POST-based endpoints of Grafana’s 

HTTP API are affected.

https://jub0bs.com/posts/2022-02-08-cve-2022-21703-writeup/



? Why does that even work?



Deep-dive into CSRF in APIs



pdr.online

APIS CAN RELY ON CORS AS A CSRF DEFENSE

Cookie-based APIs accepting non-CORS-safelisted requests 
are subject to Cross-* Request Forgery. 

APIs should restrict HTTP methods and content types, and 
force the use of CORS requests by requiring the client to 

include a custom request header.



SameSite cookies
Is the application 

the only one within 
its site?

Is the application 
API-based?

Is the application a 
traditional server-side 

application?

Synchronizer tokens CORS

yes

yes yes

no

no no



pdr.online

CSRF matters when you rely on cookies for user authN/authZ1

SameSite cookies mitigate CSRF, but not Cross-Origin Request Forgery2

APIs can rely on CORS as a defense against Cross * Request Forgery3

KEY TAKEAWAYS



Thank you!

https://pragmaticwebsecurity.com

Reach out to discuss 
how I can help you with security


