E

PASSKEYS: THE FUTURE
OF USER AUTHENTICATION

https://Pragmatic Web Security.com

News > Privacy

Gates predicts death of the
password

Traditional password-based security is headed for
extinction, says Microsoft's chairman, because it cannot
"meet the challenge” of keeping critical information secure.

Munir Kotadia

3 min read ﬁ)

Feb. 25, 2004 1:27 p.m. PT

SAN FRANCISCO--Microsoft Chairman Bill Gates predicted the
demise of the traditional password because it cannot "meet the
challenge” of keeping critical information secure.

Gates, speaking at the RSA Security conference here on Tuesday, said:
"There is no doubt that over time, people are going to rely less and
less on passwords. People use the same password on different
systems, they write them down and they just don't meet the challenge
for anything you really want to secure."

https://www.cnet.com/news/privacy/qgates-predicts-death-of-the-password/

Will passwords become obsolete soon?

Will passwords soon become a thing of the past? Have they already become obsolete? This is perhaps one

of the most prominent topics under discussion in the technical media these days.

A couple of weeks ago, Forbes.com published a story about the probable public launch of U2F (Universal
Second Factor) —a new form of authentication by Google in alliance with Yubico. Through U2F, Google
wants “to help move the web towards easier and stronger authentication, where web users canown a
single easy-to-use secure authentication device built on open standards, which works across the entire
web.” Media reports following the story have fuelled wild speculations that traditional passwords will soon
die.

https://blogs.manageengine.com/it-security/passwordmanagerpro/2013/12/12/will-passwords-become-obsolete-soon.html|

SAFETY & SECURITY

The beginning of the end of the
password

May 03, 2023 For the first time, we've begun rolling out passkeys, the easiest and most secure way to sign in to apps and

1 min read websites and a major step toward a “passwordless future.”

e Christiaan Brand e Sriram Karra « Share
Group Product Manager Senior Product Manager

Use your screen lock

®

https://blog.google/technology/safety-security/the-beginning-of-the-end-of-the-password/

| am Dr. Philippe De Ryck

©

)4 E)?lpDelr’Es Google Developer Expert

Pragmatic Web Security

Founder of Pragmatic Web Security

<& SecAppDev SecAppDev organizer

| help developers with security

@ Hands-on in-depth security training

@ Advanced online security courses

Expert security advisory services

https://pdr.online

GRAB A COPY OF THE SLIDES ...

https:// pragmaticwebsecurity.com/talks

5 ""}i
i
/in/PhilippeDeRyck & &3,,3%%?%
O,
https://infosec.exchange/@PhilippeDeRyck

00O

@) pdr.online Website icons created by Uniconlabs - Flaticon

REQUIREMENTS FOR SECURE USER AUTHENTICATION

* Simple user experience that inspires secure use
e Easy to select and use
* Nothing to remember to avoid re-use across different applications

* Resistant against common attacks against authentication mechanisms
* Not subject to guessing or brute force attacks
* Protected against phishing attacks

* Easily portable across different devices
* Users authenticate on computers, phones, tablets, etc.
* |deally, an authentication factor is portable across devices, even on less-trusted devices

Most current authentication mechanisms

(e.g., passwords, TOTP codes, ...) do not
meet these security requirements

KEY-BASED USER AUTHENTICATION

Generate a signature e

Verify the signature o
using the private key

using the public key

‘ e Authenticate by sending the signature
. 4
BACKEND

USER a Provide a challenge

The signature acts as a proof-of-
possession mechanism,
demonstrating that the user has
access to the private key

KEY-BASED AUTHENTICATION IN PRACTICE

* The user has a private key with an associated public key
e Possession of the private key is used for authentication
* Typically by signing a challenge with the private key
* The service requiring authentication verifies the signature with the public key
* Avalid signature means that the other party possesses the private key

* Key-based authentication does not rely on shared secrets
* Only the legitimate party is supposed to have this private key
e Best practices require secure storage of the private key (E.g., in an OS-backed keychain)

* Implementing key-based authentication requires client support
* The use of mutual TLS is a common pattern, but not in browser-based applications
e Out-of-band mobile applications can be used to manage authentication keys
* The new Web Authentication APl supports various key-based mechanisms

Passkeys

Passkeys can now be synced using external providers, and you can create groups
to share passwords and passkeys. In managed environments, passkeys support
Managed Apple IDs, including syncing via iCloud Keychain, and access controls

let people easily restrict how passkeys are shared and synced.

@& safari File Edit View History Bookmarks Window Help @& 2 Q & MonJun6 9:41AM

@ porcunia.com

Signin Cancel

Do you want to save a passkey for
“chella_boehm@icloud.com"? Passkeys are saved in
your iCloud Keychain and are available for sign in on all
your devices.

Continue with Touch ID
Other Options

/

/

«[7] F /i

https://developer.apple.com/passkeys/

PASSKEYS FROM THE USER'S PERSPECTIVE

Authenticators handle the
actual keys and can be the OS, a
password manager, a phone OS,

a USB key, ...

|

Authen

ticator protocol
(CTAP 2)

AUTHENTICATOR

BROWSER

The Web Authentication API

defines the JS API that client-

side code can use to interact
with authenticators

The service has to provide data
to the browser, and vice versa.
These interactions are not
defined in specifications.

authentication data

>

SETTING UP A PASSKEY

o Credential data

E 0 Register for a new account
<€

BROWSER e Data required for creating a credential BACKEND
-7 N\
’ \ o

/ 0 Store credential (public key)
\

|
I

Credential e\ / e Create credential request
\

/

AUTHENTICATOR

Generate new key pair

. . User interaction
and |nc.lude public key e e with the authenticator
in the response

USING A PASSKEY CREDENTIAL

e Signature response

E 0 Load the main page of the application
Select a passkey o €

BROWSER Q Main page with the code BACKEND
to run a passkey authentication

\ Verify signature with
/ \ e stored public key
|
Signature | .
response 0‘ / o Challenge signature request

AUTHENTICATOR

Sign the challenge and e e Interact with the
create a response authenticator

|:| Passkeys in action with passkeys.io

Does a passkey meet

our initial requirements?

Selecting a passkey is generally USlNG A PASSKEY CREDENTIAL

a smooth user experience

e Signature response

E 0 Load the main page of the application
O
Select a passkey e €

BROWSER Q Main page with the code BACKEND
to run a passkey authentication

/7 N \ e Verify signature with
/ \ stored public key
|
ifs"pa;:;: (7) ,' @ challenge signatu| Passkeys are phishing resistant,
\ because the application's origin
is embedded throughout the
protocol.

Authenticators can be cross-
platform, making them portable

by nature (e.g., a phone, a USB
Interact with the key, ...)

AUTHENTICATOR

Sign the challenge and e

(ol o NON NeN tor

Depending on the authenticator, passkeys can be synchronized
to multiple devices (e.g., a password manager, iCloud keychain)

D The full passkey experience

Usage % of all users s ?

Passkeys B-ortHer

Global 90%

Passkeys, also known as Multi-device FIDO Credentials,

provide users with an alternative to passwords that is

much easier to use and far more secure.

ai[gg-aa-1[1=a[-el Usage relative Date relative Filtered AN &
Chrome
Chrome Edge ’ Safari Firefox Opera IE for Safarion” samsung Opera Mini; Opera *
& P Android i0S Internet ~P Mobile

.

S | w0 [5 | a0 | w0

caniuse.com

PASSKEYS FROM A DEVELOPER'S PERSPECTIVE

Using the Web Authentication API to create a new passkey

1 const credential = await navigator.credentials.create(

2 createCredentialOptions
30); !

The credentials APl supports various
use cases. The options provided here
determine the type of credential.

Browsers offer a credentials APl to
support two crucial operations:
create and get

For the use of passkeys, the type of
credential is publicKey

const createCredentialOptions = {
publicKey: {

rp: o
id: 'restograde.com',
name: 'Restograde’,

}I

user: |
id: Uint8Array.from(serverData.userId, (c) => c.charCodeAt(0)),
name: serverData.userEmail,
displayName: serverData.userDisplayName,

}I

pubKeyCredParams: [
{ type: 'public-key', alg: -7 },
{ type: 'public-key', alg: -257 },

]I

challenge: Uint8Array.from(serverData.challenge, (c) => c.charCodeAt(0)),

authenticatorSelection: {
residentKey: 'required’,
requireResidentKey: true

I3

+}

Using the Web Authentication API to create a new passkey

1
2 Information about the relying party
3 rp: {e (i.e., the service asking for
4 e 1d: 'restograde.com', authentication)
5 name: 'Restograde’
6 ¥,
7
8
A human-readable name
9 for the relying party
10
1 The ID of the relying party. This value must
14 correspond to the match the relying party’s origin
13 or domain.
14

14 For example, for https://app.restograde.com, the
1d ID can be app.restograde.com or restograde.com
17
18
19
20
21

Using the Web Authentication API to create a new passkey

d

A unique ID to identify the user with their passkey credential. This ID should not contain PII
(i.e., no email) and is preferably indepdent from the user’s primary ID in the application.

Also referred to as the user handle.

6

7 uber: {

8 id: Uint8Array.from(serverData.userId, (c) => c.charCodeAt(0)),

9 name: serverData.userEmail, ‘

10 displayName: serverData.userDisplayName,

11 ’ The user handle is embedded in the

credential and is provided to the server

A username and a display during authentication

name intended for use in UX

—
15
16
17
18
19
20
21

Using the Web Authentication API to create a new passkey

O© 00O O U1l & WDN B

A challenge that should be signed by the
credential. The challenge is provided by
the server.

13
14
15
16 challenge: Uint8Array.from(serverData.challenge, (c) => c.charCodeAt(0)),
17
18
19
20
21

Using the Web Authentication API to create a new passkey

1

2

3

4

5

6

7

8

9
10 A resident key is the indicator of a discoverable
11 credential, which allows the user to select this
12 credential for authentication, even when using it
13 the first time in a specific browser.
14
15 This is an important requirement for passkeys.
16
17 authenticatorSelection: {
18 residentKey: ‘required’, §
19 requireResidentKey: true
20 I3

21

THE AUTHENTICATORSELECTION OBIJECT

* The authenticatorAttachment indicates where the key can be stored
* Platform: the key will be stored locally (e.g., keychain with password or touch ID)
* Cross-platform: they must be portable across different machines (e.g., USB)

* The userVerification property indicates if the user identity should be verified
e Fingerprint, password, or biometrics counts as user verification

e Touching a yubikey (without fingerprint scan) is not considered user verification
* This is known as user presence, but not user verification

* Browsers can allow verifiable authenticators, even when user verification is discouraged

* The residentKey properties indicate “discoverable credentials”, aka passkeys
* These are credentials that can be used without the server explicitly asking for them

Using the Web Authentication API to create a new passkey

w N =

4

Indicates which algorithms can be used
to generate signatures. This allows a
relying party to indicate what types of
signatures the backend service can verify.

9
10
11
12 pubKeyCredParams: [

13 { type: 'public-key', alg: -7 }b

Self-explanatory, right?

14 { type: 'public-key', alg: -257 },
15 1,

16

17

18

19

20

21

Which "pubKeyCredParams" to use? #1/57/

(@YX dagnelies opened this issue on Jun 28, 2022 - 32 comments - Fixed by #1843

’é) dagnelies commented on Jun 28, 2022

Hi

1

| noticed that during credentials.create(...) , if the list does not contain what the authenticator can provide,
the authenticator will not be included in the list of authenticators to choose from. For example, if you don't
include "alg":-257 , Windows Hello won't work.

Now, as a relying party this all sounds a bit like unknown mysteries.

H ’
¢ the specification says "pick your algorithms" from a huge list! As it turns OUtl there S no CIear
* no idea which algos the authenticators support @ understanding of which
¢ no idea which algos you really have to support as an RP authenticator SUppOftS what

In practice, using this list restricts your choice to a subset of authenticators available... if you manage to find out
which algo is needed. Also, most RPs are not deeply knowledgeable about which crypto algorithms is better
suited or not.

So ...are all common authenticators covered by RS256 and ES2567? Or should you as an RP add some more to
cover most authenticators? Which ones?

®

https://github.com/w3c/webauthn/issues/1757

Which "pubKeyCredParams" to use? #1/57/

(@YX dagnelies opened this issue on Jun 28, 2022 - 32 comments - Fixed by #1843

’Zf) dagnelies commented on Jun 28, 2022
&

9 MasterKale commented on Jun 28, 2022 Contributor | *°°
| 4

And for anyone interested: based on some extensive testing | did a few months back of in-the-wild
authenticators, most everything | tested only supported -7 ("ES256"), with the exception of Windows Hello
which was only -257 ("RS256"). Only the YubiKey 5C, 5Ci, and Bio also supported Ed25519 (-8 , "EdADSA").

®

So ...are all common authenticators covered by RS256 and ES2567? Or should you as an RP add some more to
cover most authenticators? Which ones?

®

https://github.com/w3c/webauthn/issues/1757

Using the Web Authentication API to create a new passkey

w N =

4

Indicates which algorithms can be used
to generate signatures. This allows a
relying party to indicate what types of
signatures the backend service can verify.

9

10

11

12 pubKeyCredParams: [

13 { type: 'public-key', alg: -7 }b

14 { type: 'public-key', alg: -257 },
15 1,

16

17

18

19

20

21

-7 (ES256) and -257 (RS256) cover
the main authenticators, but it’s a
good idea to also support -8 (EdDSA)
if your backend can handle it

THE RESULT OF CREATING A CREDENTIAL

* Creating a credential yields a promise that resolves to a PublicKeyCredential
e This object holds a bunch of data about the newly created credential (e.g., an ID)
* The important property is the response, which is an AuthenticatorAttestationResponse

* In the response, there's an encoded JSON value called clientDataJSON

* This value is the JSON data that was passed to the authenticator at creation time
e Values include the origin of the context that created the credential

* The client can use the JSON data to do a sanity check on the generated credential

* The client sends the following data to the backend for registration
* The public key of the credential
* The authenticatorData, a binary format providing the flags and ID of the authenticator

https://developer.mozilla.org/en-US/docs/Web/API/PublicKeyCredential
https://w3c.github.io/webauthn/#authenticator-data

Using the Web Authentication API to use an existing passkey

1 const credential = await navigator.credentials.get(
o

2 getCredentialOptions
30); !

The credentials APl supports various
use cases. The options provided here
determine the type of credential.

Browsers offer a new credentials API
to support two crucial operations:
create and get

For passkeys, the type of credential
is publicKey

The ID of the relying party, used to
identify which existing credentials can be
used. Must be an exact match for the

value used during registration.

Using the Web Authentication API to use

an existing passkey

1
2
3
4
5
6

const getCredentialOptions =
publicKey: {

rpId: 'restograde.com’, }

{

This rpld offers phishing protection. A
phishing website would have to use
restograde.com, but the browser will
refuse to use that on restOgrade.com

challenge: Uint8Array.from(serverData.challenge, (c) => c.charCodeAt(0)),

}
}

The challenge provided by the server
to sign with the private key.

It is critical to avoid replay attacks
that this value is not empty, and
generated from a secure random

source.

THE RESULT OF USING A CREDENTIAL

* Using a credential yields a promise that resolves to a PublicKeyCredential
* This object holds the data of using the credential (e.g., its ID, the generated signature)
* The important property is the response, which is an AuthenticatorAssertionResponse

* The client sends all the relevant ArrayBuffers to the backend for verification
* The ID of the credential (rawld)
e JSON data from creating the credential (response.clientDataJSON)
e Authenticator data, e.g., flags indicating user verification (response.authenticatorData)
* The signature (response.signature)

* The client does not handle this data, it just forwards it to the backend

https://www.w3.0org/TR/webauthn-2/#authenticatorassertionresponse

Passkeys Playground X aP

% https://learnpasskeys.io

Q Pass keyS Overview Introduction Demo Resources

Passkeys I'":'I .
Playground §:|l g

m——

T

Passkeys are cryptographic credentials that are 2

phishing-resistant and provide fast, easy and
secure passwordless authentication across
devices.

See passkeys in action

https://learnpasskeys.io/

Conditional mediation is critical for a

seamless user experience

Table of contents

Passwordless sign-inonforms 77"
with WebAuthn passkey autofill ="

How it works

WebAuthn conditional Ul leverages browser's form autofill functionality to let How to use conditional Ul
users sign in with a passkey seamlessly in the traditional password based flow.

Published on Wednesday, November 30, 2022

Eiji Kitamura
Developer Advocate for identity, security, privacy and payment on the web.
Twitter GitHub Glitch Mastodon

Chrome 108 supports passkeys, including autofill suggestions. This allows sites to build easy

sign-in experiences that are more secure.

https://developer.chrome.com/blog/webauthn-conditional-ui/

Modern browsers support a conditional Ul for various authentication mechanisms

1 <input type="text" name="username" autocomplete="username webauthn" ...>

This is optional, as the application
can always explicitly start the
selection of a passkey.

However, when there is no passkey
available, this will result in a
disruption of the flow with an error.

This input field accepts either a username, or
triggers the selection of a passkey when
available.

It is designed to offer a seamless user
experience regardless of the authentication
mechanism the user wants to use.

Modern browsers support a conditional Ul for various authentication mechanisms

1 <input type="text" name="username" autocomplete="username webauthn" ...>

Trigger the passkey Ul on the input field if passkeys are discovered

1 const credential = await navigator.credentials.get({

2 publicKey: A{

3 rpId: 'app.example.com',

4 challenge: Uint8Array.from(serverData.challenge, (c) => c.charCodeAt(0)),
5 L

6 mediation: 'conditional"

7},

| |
This API call starts a conditional passkey
authentication dialog, which only suggests
passkey authentication as an autocomplete
option if a passkey is discovered.

|:| Conditional mediation in action

PublicKeyCredential API: i R LR
. _a " : . Global 90.08%
isConditionalMediationAvailab

le() static method

aVgCIndel[--el Usage relative Date relative Filtered £

N , Chrome e * 5 N
, , for afarion™ Samsung i pera
Chrome Edge Safari Firefox Opera IE 4 A i0S Internet Opera Mini Mobile

4-107 | 12-107 }3.1-15.6) 2-118

10-93

94-113 | 6-10

108-128

108-128 |16.0-17.6§ 119-129

131-133

11242 129

18.0

130-132 18.1-TP

18.1

caniuse.com

What about the server?

@ [] @ Libraries | passkeys.dev X -+ v

Il

< C o 0 % https://passkeys.dev/docs/tools-libraries/libraries/ oL@ 0 @)

passkeys.dev Docs Device Support About Q C R § ® X

Intro > Libraries

Use Cases >
Tools & Libraries L On this page >
Libraries

Test Sites & Tools

Selection criteria

Reference >

Demos & Examples > Companies that want to own passwordless authentication internally, or
are looking to implement a turnkey solution for passkeys, will likely look
for libraries or vendors. When selecting a library to implement passkeys,
what should Relying Party developers keep an eye on?

Note: A small set of these criteria are not specific to passkeys, but are
useful to keep in mind when selecting an open-source solution.

https://passkeys.dev/docs/tools-libraries/libraries/

java-webauthn-server

Server-side Web Authentication library for Java. Provides implementations of the Relying Party operations required for
a server to support Web Authentication, including passkey authentication.

Psychic signatures in Java

In April 2022, CVE-2022-21449 was disclosed in Oracle’s Open]JDK (and other JVMs derived from it)

which can impact applications using java-webauthn-server. The impact is that for the most common
WARNING type of WebAuthn credential, invalid signatures are accepted as valid, allowing authentication bypass

for users with such a credential. Please read Oracle’s advisory and make sure you are not using one of

the impacted Open]DK versions. If you are, we urge you to upgrade your Java deployment to a version
that is safe.

Table of contents

Features

¢ Generates request objects suitable as parameters to navigator.credentials.create() and .get()
 Performs all necessary validation logic on the response from the client

» No mutable state or side effects - everything (except builders) is thread safe

¢ Optionally integrates with an "attestation trust source" to verify authenticator attestations

e Reproducible builds: release signatures match fresh builds from source. See [reproducible-builds] below.

https://developers.yubico.com/java-webauthn-server/

® © ® [simplewebAuthn x + o

< C @ [% https://simplewebauthn.dev @ & ‘@ 2

E SimpleWebAuthn Docs Debugger @ GitHub & {<:)} Q Search [*](X]

SimpleWebAuthn

A collection of TypeScript-first libraries for simpler WebAuthn integration. Supports modern browsers and

Node.

fco

Simple to Use First-Class TypeScript Support FIDO® Conformant

It's in the title! SimpleWebAuthn makes it as Everything is authored in 100% TypeScript! And SimpleWebAuthn passes FIDO® Conformance
easy as possible to add WebAuthn-powered a dedicated package for type declarations Server Tests with flying colors! You can rest
passkeys to your websites so that you can makes it even simpler to use SimpleWebAuthn easy knowing that when you need to take things
mova An ta tha fiin otoff in vALIE A T\Wi»ﬂ- nrain~te +A tha navi laval C;mn'n\Wﬂlnl

https://simplewebauthn.dev/

When possible, consider offloading passkey

usage to an (internal) identity provider

0 Authentication confirmation

a Start authentication

a Please use the IDP SERVICE
e Welcome back Philippe

e Passkey authentication
e Authenticate for Restograde

0 Please use a passkey for authentication

e Authentication confirmation IDENTITY

The offloading of authentication in this way is typically PROVIDER

implemented using OpenID Connect.

The application never has to handle passkeys, since user
authentication is the responsibility of the identity provider.

Welcome

Log in to AuthO Demo to continue to Example
App.

— Email address

philippe@pragmaticwebsecurity.com

Can't login to philippe@pragmaticwebsecurity.com

S Passkey from your Chrome profile @

- [0 Use a different passkey

Manage passwords and passkeys... Omn

=
Don'thaveana "

OR

at Continue with a passkey

When an Identity Provider supports
passkeys, enabling it is typically
straightforward, as the IDP handles
all the heavy lifting.

KEY TAKEAWAYS

1 Passkeys offer key-based authentication with a great UX

2 Passkeys are widely adopted by browsers, password managers, etc.

3 Consider offering users passkey support to eradicate passwords

@ pdr.online

Need training or security guidance?
Reach out to discuss how | can help

https://pragmaticwebsecurity.com

