Pragmatic Web Security

FROM THE OWASP Topr TEN(S) To THE OWASP ASVS

PHILIPPE DE RYCK @PhilippeDeRyck — philippe@PragmaticWebSecurity.com

@PhilippeDeRyck

#)ownsp

OWASP Top 10 - 2017

The Ten Most Critical Web Application Security Risks

This work i kcensed under a ©m

moes Allribution-ShareAlke 4.0 International License

https_lowasp.org

y @PhilippeDeRyck

OWJASP

OWASP o

PROActive

@ CONTROLS

FOR DEVELOPERS
2018 v 3.0

PROJECT LEADERS

KATY ANTON
IV MANCO
I\ BRD

10 Critical Security Areas That Software Developers Must Be Aware Of

JUJAHSP

Open Web Application
Security Project

Application Security Verification Standard 3.0.1

* Traveling the world to deliver security courses
* In-depth web security training for developers
e Custom training courses with developer-oriented labs
* Covering web security, API security, Angular/React security

e 15+ years of security experience
* Founder of Pragmatic Web Security
e Author of Primer on client-side web security
* Creator of Web Security Fundamentals on edX

..-.'-.-. .

DR. PHILIPPE DE RYCK

e Course curator of the SecAppDev course
* Yearly security course targeted towards developers
* More information on https://secappdev.org PH.D. IN WEB SECURITY

GOOGLE DEVELOPER EXPERT

(NOT EMPLOYED BY GOOGLE)
y @PhilippeDeRyck

OWASP 10P 10

The Ten Most Critical
Web Application Security Risks

’ @PhilippeDeRyck

OWASP Top 10 - 2013

A1 - Injection

A2 - Broken Authentication and Session Management

A3 - Cross-Site Scripting (XSS)

A4 - Insecure Direct Object References [Merged+A7)

AS - Security Misconfiguration

AB - Sensitive Data Exposure

AT - Missing Function Level Access Contr [Merged+Ad)

AB - Cross-Site Request Forgery (CSRF)

A9 - Using Components with Known Vuinerabilities

A10 - Unvalidated Redirects and Forwards

(%]

OWASP Top 10 - 2017

A1:2017-Injection

A2:2017-Broken Authentication

A3:2017-Sensitive Data Exposure

A4:2017-XML External Entities (XXE) [NEW)

AS5:2017-Broken Access Control [Merged)
AB:2017-Security Misconfiguration
AT:2017-Cross-Site Scripting (XSS)
AB:2017-Insecure Deserialization [NEW, Community]

A9:2017-Using Components with Known Vulnerabilities

A10:2017-Insufficient Logging&Monitoring [NEW,Comm.)

oo.oo.oooﬁ—:"} s‘cum @rrnnnnnnnnnduonnnnnnd “nm

~ Weakness
—

Injection can result in data loss,
corruption, or disclosure 1o
unauthorized parties, loss of
accountabity, or denial of access.
Injection can sometimes lead to
complete host takeover.

The business impact depends on the
needs of the application and data.

Detectability: 3

Injection flaws are very prevalent, particularly in
legacy code. Injection vuinerabilites are often found
in SQL, LDAP, XPath, or NoSQL queries, OS
commands, XML parsers, SMTP headers,

expression languages, and ORM queries.,

Injection flaws are easy to discover when examining
code. Scanners and fuzzers can help attackers find
injection flaws.

Almost any source of data can be an
injection vector, environment
variables, parameters, extemnal and
internal web services, and all types of
users. Injection Nlaws occur when an
attacker can send hostile data to an
interpreter.

, @PhilippeDeRyck 7

4 — XXE
7~ N
data exposure
I 3
authentication
data exposure

access control

BROWSER

, @PhilippeDeRyck

AWARENESS

Broken Authentication

.........+ wmn.'. 'mm

App. Specific J=100010 0T ’r ‘ detectak Technical: 3

Attackers have access 10 hundreds of | The prevalence of broken authentication is Attackers have 10 gain access to only
millions of valid usarmame and widespread due 10 the design and implementation of | a few accounts, or just one admin
password combinations for credential | most identity and access controls, Session manage- | account to compromise the system.

stuffing, default administrative ment is the bedrock of authentication and access ‘ |
account lists, automated brute force, | controls, and is present in all stateful applications. SAPRIRCNI DI Sl St of fe

. application, this may allow money
and dictionary attack tools, Session L :
management attacks are well Attackers can detect broken authentication using laundering, social security fraud, and

ndersiood : ; : manual means and exploit them using automated identity thef, or disclose legally
3,,0,“,00 sbmmn.:. damne b tools with password lists and dictionary attacks. protected highly sensitive information,

, @PhilippeDeRyck 10

, @PhilippeDeRyck

Login

A ~irococ
] '

philippe@pragmaticwebsecurity.com

LOGIN

11

, @PhilippeDeRyck

[

BROWSER

[—

Authorization

o

Secc;
Ssion Managem, et

Authentication

BACKEND

12

Is the Application Vulnerable?
Confirmation of the user's identity, authentication, and session

attacks.
There may be authentication weaknesses if the application:

* Permits automated attacks such as credential stuffing, where lotadmin users.
mmmsalmdvdudmamaandw « Implement weak-password checks, such as testing new or
abe changed passwords against a list of the top 10000 wors!t
passwords.
* Align password length, complexity and rotation policies with
NIST 800-63 B's guidelines in section 5.1.1 for Memorized

.......

* Ensure registration, credential recovery, and API puhwuys are
hardened against account enumeration attacks by using the
same messages for all outcomes.

* Limit or increasingly delay failed login attempts, Log all fallures
and alert administrators when credential stuffing, brute force, or
other attacks are detected,

EmososSosaion lelnmoURL (eg URL mwmlno)
* Does not rotate Session |0s after successful login. + Use a server-side, secure, built-in session manager that

+ Does not properly invalidate Session IDs. User sessions or generates a new random session 1D with high entropy after
authentication tokens (particularly single sign-on (SSO) tokens) jogin, Session IDs should not be in the URL, be securely stored
aren't properly invalidated during logout or a period of inactivity. | | and invalidated after logout, idle, and absolute timeouts

Awareness on the most critical issues in web applications
Brief overview of do's and s in web applications
Advice is independent of application, user impact or required skills

y @PhilippeDeRyck

OWASP 10P 10 PROACTIVE CONTROLS

Ten critical security areas that
developers must be aware of

y @PhilippeDeRyck

The list is ordered by importance with list item number 1 being the most important:_

C1: Define Security Requirements

C2: Leverage Security Frameworks and Libraries
C3: Secure Database Access

C4: Encode and Escape Data

C5: Validate All Inputs

C6: Implement Digital Identity

C7: Enforce Access Controls

C8: Protect Data Everywhere

C9: Implement Security Logging and Monitoring

C10: Handle All Errors and Exceptions

16

C1: Define Security Requirements

I ——————
Description

A security requirement is a statement of needed security functionality that ensures one of
many different security properties of software is being satisfied. Security requirements are
derived from industry standards, applicable laws, and a history of past vulnerabilities. Security

requirements define new features or additions to existing features to solve a specific security
problem or eliminate a potential vulnerability.

, @PhilippeDeRyck 17

AWARENESS

OWASP Proactive Controls v 3.0

C6: Implement Digital Identity

Description

Digital Identity is the unique representation of a user (or other subject) as they engage in an
online transaction. Authentication is the process of verifying that an individual or entity is who they
claim to be. Session management is a process by which a server maintains the state of the
users authentication so that the user may continue to use the system without re-
authenticating. The NIST Special Publication 800-638: Digital Identity Guidelines (Authentication and
Lifecycle Management provides solid guidance on implementing digital identity, authentication and
session management controls.

Below are some recommendations for secure implementation.

Level 1 : Passwords

Passwords are really really important. We need policy, we need to store them securely, we
need to sometimes allow users to reset them.

Level 2 : Multi-Factor Authentication

NIST 800-63b AAL level 2 is reserved for higher-risk applications that contain "self-asserted PlI
or other personal information made available online." At AAL level 2 multi-factor
authentication is required including OTP or other forms of multi-factor implementation.

Level 3 : Cryptographic Based Authentication

NIST 800-63b Authentication Assurance Level 3 (AAL3) is required when the impact of
compromised systems could lead to personal harm, significant financial loss, harm the public
interest or involve civil or criminal violations. AAL3 requires authentication that is "based on
proof of possession of a key through a cryptographic protocol.” This type of authentication is
used to achieve the strongest level of authentication assurance. This is typically done though
hardware cryptographic modules.

, @PhilippeDeRyck 20

Implement Secure Password Storage

In order to provide strong authentication controls, an application must securely store user
credentials. Furthermore, cryptographic controls should be in place such that if a credential
(e.g., a password) is compromised, the attacker does not immediately have access to this
information.

PHP Example for Password Storage

Below is an example for secure password hashing in PHP using password_hash() function
(available since 5.5.0) which defaults to using the bcrypt algorithm. The example uses a work
factor of 15.

<?php
$cost = 15;

$password_hash = password_hash("secret _password”, PASSWORD _DEFAULT, ["cost"™ =>
$cost]);

7>

, @PhilippeDeRyck

21

Awareness on the most important security controls
Mainly focusing on the do's that matter for almost every application
Advice is independent of application, user impact or required skills

y @PhilippeDeRyck

Y @PhilippeDeRyc

OWASP APPLICATION SECURITY
VERIFICATION STANDARD

A list of security requirements or tests to
determine how secure an application is

V1.

V2.

V3.

V4,

V5.

V7.

V8.

V9.

Architecture, design and threat modelling
Authentication

Session management

Access control

Malicious input handling

Cryptography at rest

Error handling and logging

Data protection

y @PhilippeDeRyck

V10.

V11.

V13.

V15.

V16.

V17.

V18.

V19.

Communications

HTTP security configuration
Malicious controls

Business logic

File and resources

Mobile

Web services (NEW for 3.0)

Configuration (NEW for 3.0)

24

Description

Verify that all application components are identified and
are known to be needed.

Verify that all components, such as libraries, modules, and
external systems, that are not part of the application but
that the application relies on to operate are identified.

Verify that a high-level architecture for the application
has been defined.

Verify that all application components are defined in
terms of the business functions and/or security functions
they provide.

Verify that all components that are not part of the
application but that the application relies on to operate
are defined in terms of the functions, and/or security
functions, they provide.

y @PhilippeDeRyck

Since

1.0

1.0

1.0

1.0

1.0

25

Description

Verify that the runtime environment is not susceptible to
buffer overflows, or that security controls prevent buffer
overflows.

Verify that server side input validation failures result in
request rejection and are logged.

Verify that input validation routines are enforced on the
server side.

Verify that a single input validation control is used by the
application for each type of data that is accepted.

Verify that all SQL queries, HQL, OSQL, NOSQL and stored
procedures, calling of stored procedures are protected by the
use of prepared statements or query parameterization, and

thus not susceptible to SQL injection

y @PhilippeDeRyck

1.0

1.0

1.0

1.0

26

ASVS DEFINES DETAILED =
VERIFICATION REQUIREMENTS FOR :
LEVELS 1 AND ABOVE; WHEREAS
LEVEL 0 IS MEANT TO BE FLEXIBLE
AND IS CUSTOMIZED BY EACH
ORGANIZATION

OWASP ASVS LEVELS

, @PhilippeDeRyck

27

y @PhilippeDeRyck

n CURSORY

Applications handling
critical info
Applications handling
sensitive info
All applications

28

DRIVE SECURITY PROCESSES

ALIGNMENT STANDARD

Description

Verify all pages and resources by default require
authentication except those specifically intended to be 1.0
public (Principle of complete mediation).

Verify that forms containing credentials are not filled in by
the application. Pre-filling by the application implies that

credentials are stored in plaintext or a reversible format, 3.01
which is explicitly prohibited.

Verify all authentication controls are enforced on the 1.0
server side. '
Verify all authentication controls fail securely to ensure 1.0
attackers cannot log in. '
Verify password entry fields allow, or encourage, the use

of passphrases, and do not prevent password managers, 301

long passphrases or highly complex passwords being
entered.

2.19
2.20

Verify that information enumeration is not possible via 20
login, password reset, or forgot account functionality. '
Verify there are no default passwords in use for the

application framework or any components used by the 2.0
application (such as "admin/password").

Verify that anti-automation is in place to prevent breached

credential testing, brute forcing, and account lockout 301
attacks.

Verify that all authentication credentials for accessing
services external to the application are encrypted and 2.0
stored in a protected location.
Verify that forgotten password and other recovery paths
use a TOTP or other soft token, mobile push, or other
. 3.0.1
offline recovery mechanism. Use of a random value in an
e-mail or SMS should be a last resort and is known weak.

Verify that all authentication challenges, whether
successful or failed, should respond in the same average
response time,

Verify that secrets, API keys, and passwords are not
included in the source code, or online source code
repositories.

Verify that if an application allows users to authenticate,
they can authenticate using two-factor authentication or
other strong authentication, or any similar scheme that
provides protection against username + password
disclosure.

Verify that administrative interfaces are not accessible to
untrusted parties.

Browser autocomplete, and integration with password
managers are permitted unless prohibited by risk based

policy.

3.0

3.0

3.0

3.0

3.01

OWASP APPLICATION SECURITY
VERIFICATION STANDARD

Detailed overview of security do's and don'ts in web applications

Advice incorporates application type and development challenges

y @PhilippeDeRyck

DX CHEckusT

Pocket iNet ISP exposed 73GB of data

Including secret keys, plain text passwords

Updated: The Washington-based ISP’'s bucket exposed everything from
passwords to internal corporate data

Verify there are no default passwords in use for the
application framework or any components used by
the application (such as “admin/password”).

y @PhilippeDeRyck

M AUTOMATED SECURITY. TESTING

AdultFriendFinder hacked: 400
million accounts exposed

Huge breach reveals 15 million "deleted” accounts among compromised data...

TOM MENDELSOHMN - 11/14/2016, 3113 PM

'MDS5 Rainbow Tables

$ ma5_asch-32-95¢1.7

§ mdS_asci-32-9501-8

§ mas_mixalpha-numeric# 1-8

§ madS_mixalpha-numernica 1-9

Charset

asce-32-95

asch-32-95

1%8

1%9

70.576,641,626,495

6,704,780,654 517,120

221,919,451,578,090

13,758,005,097 841,642

t F

88 8288 E‘

868 %

e
83
o)

2¥88 BE8S

i

i §§ gi

Non-perfect

y @PhilippeDeRyck

39

IS HASH CRACKING REALLY THAT FAST?

200 000 million

68 771 million

Hashes per second

390

MD5 SHA1 BCRYPT(13)

, @PhilippeDeRyck

Verify that account passwords are one way hashed
with a salt, and there is sufficient work factor to

defeat brute force and password hash recovery
attacks.

y @PhilippeDeRyck 42

ﬁ SECURE CODING GUIDELINES

e
Do Do VIO WN

14
15
16

USERNAME HARVESTING THROUGH TIMING ATTACKS

List<User> users = new UserDAO().findAllByEmailWithPassword(email);
if(users.size() == 1) {
User user = users.get(0);

Logger.info("Authentication successful.");

. . 100 - 200ms
return redirectAfterLogin();)
} operation

if (AuthenticationUtils.verifyPassword(user, password)i\i\\\

else {

Logger.warn("Invalid password. Authentication failed");

return handleLoginError(); AImOSt |nSta nt

. / operation

else {
Logger.warn("No matching user account found. Authentication failed");
return handleLoginError();

}

, @PhilippeDeRyck

2.28

Verify that all authentication challenges, whether
successful or failed, should respond in the same
average response time.

, @PhilippeDeRyck 45

M PRIORITIZE SECURITY

2.31

Verify that if an application allows users to
authenticate, they can authenticate using two-factor
authentication or other strong authentication, or

any similar scheme that provides protection against
username + password disclosure.

y @PhilippeDeRyck

47

y @PhilippeDeRyck

Set up Authenticator

« Get the Authenticator App from the App Store.
« Inthe App select Set up account.
» Choose Scan barcode.

CANT SCAN IT?

CANCEL

48

X' UNION SELECT id,email, totpsecret, 'bleh’, 'bleh.png’

FROM users WHERE 'x%' = 'x

wwider

philippe@pragmaticweb
security.com

VBRHJB36DRHDXGP2

w wider

karan@maliciousfood.co
m

w wider

terry@restograde.com

, @PhilippeDeRyck

wwder

ariana@restograde.com

w.owder

brett@restograde.com

w. wider

fletcher@restograde.co
m

H7ZPUUROLAOSZVLG

49

Verify that all SQL queries, HQL, OSQL, NOSQL and
stored procedures, calling of stored procedures are
protected by the use of prepared statements or

query parameterization, and thus not susceptible to
SQL injection

y @PhilippeDeRyck

X

Verify that all shared secrets are encrypted and
stored in a protected location

y @PhilippeDeRyck 51

M FORK AND CUSTOMIZE

PhilippeDeRyck

ASVS v4.0

IN PROGRESS
AVAILABLE ON GITHUB
PARTICIPATE!

SecAppDev 2019

February 18 - 22, Leuven, Belgium

1-day workshops Building secure web & web service applications

Jim Manico

Whiteboard hacking (aka hands-on Threat Modeling)

Sebastien Deleersnyder

Securing Kubernetes the hard way
Jimmy Mesta

5-d ay d ud |-t racC k program Crypto, AppSec Processes, web security,
access control, mobile security, ...

Pragmatic Web Security

/in/PhilippeDeRyck @PhilippeDeRyck

philippe@pragmaticwebsecurity.com

