E

OAUTH 2.0 AND OPENID CONNECT
FOR SINGLE PAGE APPLICATIONS

https://Pragmatic Web Security.com

OpenlID Connect

SECURITY
TOKEN
SERVICE

OAuth 2.0

l Authenticate the user for me? l
Help me out here,
is this client allowed to do that?

¢ Can |l access the API please?

OAuth 2.0
© ©
L L
—/> —
MOBILE API
— —/> —/>
BACKEND FRONTEND Can you handle this for me please? e AP
Here's an access token &
T =
API

OAuth 2.0

, @PhilippeDeRyck

TERMINOLOGY

This session
User
S
JA API

Security Token Service (STS)

y @PhilippeDeRyck

OAuth 2.0

Resource Owner

Resource Server

Authorization Server

Client

OpenlD Connect

End-User

OpenlD Provider

Relying Party

| am Dr. Philippe De Ryck

@ Fragmatic Weh Securlty Founder of Pragmatic Web Security

Security for developers

) 4 ExglpDe}’Es Google Developer Expert

AMBASSADOR Auth0 Ambassador

R o G R A M

A Sccure

@) icati]
- D elaoment SecAppDev organizer

| help developers with security

Hands-on in-depth security training

@ Advanced online security courses

Security advisory services

https://pragmaticwebsecurity.com

THE AUTHORIZATION CODE FLOW WITH PKCE

e Store code challenge

e Allow the restograde frontend access? with the authorization code

E 0 Who are you? Authenticate please!

. SECURITY
USER e Authenticate to restograde.com e
e Authorize access SERVICE

@ Check code verifier against
stored code challenge

Exchange .
authorization code @ @ Identity token, access token &

Follow redirect to restograde.com e
refresh token

with code challenge . .
with code verifier

e Redirect to the restograde frontend
with authorization code

@ Use information from identity
token to "authenticate” the user

calculate code challenge @ @ Request with @
a Open restograde.com with code challenge Q access token
O

BROWSER @ Follow redirect with authorization code FRONTEND @ Response API

Generate code verifier and 0

THE AUTHORIZATION CoDE FLOW WITH PKCE

0 Store code challenge
with the authorization code

e Allow the restograde frontend access?
o Who are you? Authenticate please!

SECURITY
TOKEN
0 Authorize access SERVICE

e Authenticate to restograde.com

@ Check code verifier against
A stored code challenge

Exchange
authorization code @ @ Identity token & access token
with code verifier

Follow redirect to restograde.com
with code challenge e

e Redirect to the restograde frontend
with authorization code

\ Use information from identity

Generate code verifier and

Calculate code chalienge @/ &) | PKCE ensures that the same

E a Open restograde.com with code challenge c|ient insta nce that sta rted

BROWSER @ Follow redirect with authorization code FRONTE the ﬂOW n Step 2 fl“lShES the
flow in step 11

THE AUTHORIZATION CoDE FLOW WITH PKCE

e Store code challenge

e Allow the restograde frontend access? with the authorization code

E < 0 Who are you? Authenticate please!

e Authenticate to restograde.com

SECURITY

USER TOKEN
o Authorize access SERVICE - .
@ Check code verifier against
A stored code challenge

Exchange _
authorization code @ @ Identity token, access token &

Follow redirect to restograde.com e
refresh token

with code challenge i -
with code verifier

e Redirect to the restograde frontend
with authorization code

@ Use information from identity

Generate code verifier and Q token to "authenticate" the user

calculate code challenge @ @ Request with
a Open restograde.com with code challenge Q access token
S,

BROWSER @ Follow redirect with authorization code FRONTEND @ Response

API

40

© © 7he redirect URI

1
2
3
4
5
6
7/
8

https://sts.restograde.com/authorize

?response_type=code e

&client_id=1Y5g0BKB7Mow4yD lb6rdGPs0211g70sv e

&scope=read

Indicates the authorization code flow
The client requesting access

&redirect_uri=https://app.restograde.com/callbacke——— Where the STS should send the code

&state=s@wzojm2w8c23xzprkk6

&code_challenge=JhENOAmNj7B..Wh5PxWitZYK1woWh5PxWitZY e— The PKCE code challenge

&code_challenge_method=S256 e

[&]

The PKCE hash function

THE AUTHORIZATION CODE FLOW WITH PKCE

o Allow the restograde frontend access?
o Who are you? Authenticate please!

USER

Follow redirect to restograde.com
with code challenge e

.

BROWSER

) 4

e Authenticate to restograde.com
0 Authorize access

o Redirect to the restograde frontend

with authorization code

Exchange
authorization code
with code verifier

©
[

N/
SECURITY
TOKEN
SERVICE

° Store code challenge
with the authorization code

Check code verifier against
A7 © :

stored code challenge

Q' |@ Identity token, access token &

refresh token

@ Use information from identity
\ ' " 2, "
Generate code verifier and 0 token to "authenticate" the user
calculate code challenge @ @ Request with @
0 Open restograde.com with code challenge Q access token 2 Q
> —) < = e
@ Follow redirect with authorization code FRONTEND @ Response API

@) The request to exchange the authorization code

O oo NJ Ul &~ W DN BB

POST /oauth/token
Host: sts.restograde.com

grant_type=authorization_code e Indicates the code exchange request
&client_i1d=1Y590BKB7Mow4yD1b6rdGPs0211g70sv e The client exchanging the code
&redirect_uri=https://app.restograde.com/callback «———— The redirect URI used before
&code=Sp1x10BeZQQYbYS6WXSbIA e The code received in step 10

&code_verifier=1T5q6nbPQRtdj..~IUdKErVDFG. fF4z7CzCxo *—— The code verifier from step 1

THE AUTHORIZATION CODE FLOW WITH PKCE

° Store code challenge
o Allow the restograde frontend access? @ with the authorization code
| ‘ | o Who are you? Authenticate please! Q
[€— - —
S : e SECURITY
USER e Authenticate to restograde.com TOKEN
0 Authorize access SERVICE .
@ Check code verifier against
A stored code challenge

Follow redirect to restograde.com Exchange

with code challenge o authorization code
with code verifier

|@ Identity token, access token &
refresh token

o Redirect to the restograde frontend
with authorization code

i @ Use information from identity

\
token to "authenticate" the user

Generate code verifier and 0 @

calculate code challenge @ Request with
Open restograde.com with code challenge access token
] \e £

S)
s

\ 4

BROWSER @ Follow redirect with authorization code FRONTEND @ Response

API

THE AUTHORIZATION CoDE FLOW WITH PKCE

e Store code challenge
with the authorization code

e Allow the restograde frontend access?
o Who are you? Authenticate please!

. SECURITY
e Authenticate to restograde.com e
0 Authorize access SERVICE . !
= @ Check code verifier against
stored code challenge
. Exchange
Follow redirect to restograde.com)
with code challenge e thorization __mdlgn_tnty token & access token

The frontend generates and stores
the code verifier in the browser

Redirect to thé
with authorization code

@ Use information from identity

Generate code verifier and a token to "authenticate" the user

Calculate code challenge @ @ Request with
e Open restograde.com with code challenge Q access token
—

BROWSER @ Follow redirect with authorization code FRONTEND @ Response

API

THE AUTHORIZATION CoDE FLOW WITH PKCE

0 Store code challenge

e Allow the restograde frontend access? with the authorization code

o Who are you? Authenticate please!

SECURITY
TOKEN
0 Authorize access SERVICE

e Authenticate to restograde.com

@ Check code verifier against
stored code challenge

Exchange
authorization code @ @ Identity token & access token

with code verifier No tokens are issued through

the URL-based redirect mechanism

Follow redirect to restograde.com
with code challenge e

®
e Redirect to the restograde frontend
with authorization code

@ Use information from identity

Generate code verifier and Q token to "authenticate" the user

Calculate code challenge @ @ Request with
e Open restograde.com with code challenge Q access token
—

BROWSER @ Follow redirect with authorization code FRONTEND @ Response

API

THE AUTHORIZATION CoDE FLOW WITH PKCE

0 Store code challenge
with the authorization code

e Allow the restograde frontend access?
o Who are you? Authenticate please!

. SECURITY
e Authenticate to restograde.com e
0 Authorize access SERVICE . !
yY @ Check code verifier against
. stor] The code is exchanged for tokens

| using a (cross-origin) POST request

Exchange
authorization code @ @ Identity token & access token
with code verifier

Follow redirect to restograde.com
with code challenge e

e Redirect to the restograde frontend
with authorization code

@ Use information from identity
token to "authenticate"” the user

Calculate code challenge @ Request with @
E e Open restograde.com with code challenge Q @ access token Q
—— —
BROWSER @ Follow redirect with authorization code FRONTEND @ Response API

Generate code verifier and °

® O ® @ FlowSimulator X +

d cC o N @ flowsimulator.pragmaticwebsecurity.com/flows/9kDrJGuk9xs4p51kS5cg

Authorization Code flow (public client)

The Authorization Code flow consists of two phases. The ® © ® @ Fiow simulator x +

using the user's browser. When this phase completes, the ¢l «
the Security Token Service. In the second phase, the client
exchange the authorizatic

(V) Initialization of the flow

The first step of the Authorization Code flow starts by navigating the user
Service. The options below allow you to configure the details of the reque

Flow configuration

Scope @

Scope
openid email read:reviews delete:reviews

Proof Key for Code Exchange (PKCE)

) Use PKCE for this flow

QalQ » @ =

C N N & flowsimulator.pragmaticwebsecurity.com/flows/9kDrJGuk9xs4p51kS5cg Q@

RKequest neaaers

No custom request headers defined

Request body
Key Value
grant_type authorization_code
client_id DtsTIiILAWQ3JXIwaoPQzI8vXhNI6gGnb
redirect_uri https://flowsimulator.pragmaticwebsecurity.com
code L7S5YHOSLAT3F631
code_verifier 6udnoMwCm-PKCMxeSp4JbZwtQHCS6ZsVBnHY-3UazZrM

Full Request

POST /oauth/token
Host: sts.restograde.com

grant_type=authorization_code&client_id=DtsTliLAWq3JXIwaoPQz18vXhNI6qGnb&redirect_uri=https%3A%2F
%2Fflowsimulator.pragmaticwebsecurity.com&code=L7S5YHOSLAT3F631&code_verifier=6uJnoMwCm—
PKCMxeSp4JbZwtQHCS6ZsVBnHY-3UazZrM

@ Copy as HTTPie command (D Copy as cURL command

W @PhilippeDeRyck https://flowsimulator.pragmaticwebsecurity.com

@NgModule({

imports: [

BrowserModule,

Aut hMOC_1U1€ . forRoot ({ Configure the SDK with the domain
domain: 'sts.restograde.com’, e——— of your tenant and the clientID of
clientId: '1Y59g0BKB7Mow4yD1lb6rdGPs02i1g70sv’, the SPA application

}),

constructor(public auth: AuthService) {}

login() {

The AuthO AuthService exposes all , L :
this.auth.loginWithRedirect();

relevant features to use in o
components and services ¥
logout() {
this.auth.logout({ returnTo: window.location.origin });
¥

y @PhilippeDeRyck

import { AuthConfig } from 'angular-oauth2-oidc';

export const authCodeFlowConfig: AuthConfig = {
issuer: 'https://sts.restograde.com’,
redirectUri: window. location.origin + '/index.html',

clientId: '1Y5g@BKB7Mow4yD1b6rdGPs02i1g70sv’, Configure the library with the
responseType: 'code', &———— domain of your tenant and the

scope: 'openid profile email offline_access api', clientID of the SPA application

customQueryParams: {
audience: 'https://api.restograde.com',

I

this.oauthService.configure(authCodeFlowConfig);
this.oauthService. loadDiscoveryDocumentAndTryLogin();

W) @PhilippeDeRyck this.oauthService.initCodeFlow();
ilippeDeRyc

ReactDOM. render (

<Auth@Provider
domain="sts.restograde.com"
clientId="1Y590BKB7Mow4yD1b6rdGPs02i1g70sv"

Configure the SDK with the domain
of your tenant and the clientID of
the SPA application

redirectUri={window. location.origin}

<App />
</Auth@Provider>,
document.getElementById('app"')

);

const {
isLoading,
isAuthenticated,

Feature-specific hooks expose all error,
relevant information and ® user,
operations for use in components loginWithRedirect,
logout,
getAccessTokenSilently,
} = useAutho();

y @PhilippeDeRyck

@auth0/auth0-spa-js

1.12.0 + Public « Published 7 days ago

[3) Readme B Explore [een

e 7 Dependencies &% 96 Dependents

@ 43 Versions

@auth0/auth0-spa-js

AuthO SDK for Single Page Applications using Authorization Code Grant Flow with PKCE.

, @PhilippeDeRyck

AuthO's generic JS SDK, which can
be used in any JS-based framework
or frontend application

Install

* npm i @auth@/auth0-spa-js

¥+ Weekly Downloads

108,307

_.————v""'/\/“

The Authorization Code Flow with PKCE is

the only relevant flow for SPAs today

What if an access token expires?

THE REFRESH TOKEN FLOW

SECURITY
TOKEN
SERVICE

Request new access token Q

with refresh token e Access token & refresh token

A 4
@ e Request with @
Q access token Q
Frontend has an access token | — | —
and refresh token, and monitors o FRONTEND e Response API

access token expiration

What if an attacker injects malicious code

to steal the tokens from the SPA?

REFRESH TOKEN ROTATION

* Refresh token rotation is required for using refresh tokens in the browser
e Part of the OAuth 2.0 for Browser-Based Apps proposal
* Refresh tokens are used once to obtain a new access token and new refresh token
* Previously used refresh tokens become invalid

App obtains tokens
AT1 and RT1

App refreshes tokens
Use RT1
Receive AT2 and RT2

AT1 expires

App refreshes tokens
Use RT2
Receive AT3 and RT3

AT2 expires

App refreshes tokens
Use RT3
Receive AT4 and RT4

— >

AT3 expires

DETECTING REFRESH TOKEN ABUSE

* When the STS detects the re-use of a refresh token, something is wrong
* The refresh token is immediately revoked, preventing abuse

* To ensure security, the STS revokes the entire token chain of this refresh token
* The abuse of RT2 leads to the revocation of RT3, RT4, ...

App obtains tokens
AT1 and RT1

App refreshes tokens
Use RT1
Receive AT2 and RT2

AT1 expires

App refreshes tokens
Use RT2

Attacker uses RT2
Receive AT3 and RT3

Attacker steals RT2

AT2 expires

STS notices reuse of RT2
No tokens are issued

RT3 is revoked

—

DETECTING REFRESH TOKEN ABUSE

* When the STS detects the re-use of a refresh token, something is wrong
* The refresh token is immediately revoked, preventing immediate abuse

* To ensure security, the STS revokes the entire token chain of this refresh token
* The abuse of RT2 leads to the revocation of RT3, RT4, ...

App obtains tokens
AT1 and RT1

App refreshes tokens
Use RT1
Receive AT2 and RT2

AT1 expires

Attacker steals RT2

App refreshes tokens
Use RT2
Receive AT3 and RT3

AT2 expires

STS notices reuse of RT2
No tokens are issued
RT3 is revoked

AT3 expires

Attacker uses RT2

Problem solved, right?

SIDESTEPPING REFRESH TOKEN ROTATION

A https://app.restograde.com

@

Monitor the app for refresh tokens (if available)
Keep running the refresh flow when needed

Return new access tokens and refresh tokens

Send tokens to a server controlled by the attacker

Wait for the app to become inactive to use RT

SECURITY
TOKEN
SERVICE

The SDK using refresh o
tokens to renew p
access tokens

STEALING ALL TOKENS WITH THE SILENT RENEW

° The SDK running legitimate OAuth 2.0 flows
a Setup a listener to receive messages from a frame
a Load a hidden iframe in the application’s page
eee 0 Run a silent OAuth 2.0 flow in the hidden iframe
a Receive the response from the iframe
0o
©

Extract new tokens associated with the user

Legitimate application code
handling access and refresh tokens

g © SECURITY
— TOKEN
«— [a4 SERVICE
o ® [

Because the browser already has an
authenticated session from step 1, the
malicious flow reuses the existing session

— sts.restograde.com: SessID

COOKIE JAR

So, we're screwed?

THE CONCEPT OF A BACKEND-FOR-FRONTEND

The Restograde application Run the Authorization Code flow

L with client authentication Q

SECURITY
TOKEN
SERVICE

a Issue access token and refresh token

Proxy API requests with access token
retrieved from session

The OAuth 2.0 client

application
?

The client can follow best practices for
backend applications (client authentication,
sender constrained tokens, ...)

THE CONCEPT OF A BACKEND-FOR-FRONTEND

The Restograde application Run the Authorization Code flow
with client authentication a SECURITY

L TOKEN
—————————————————————————— SERVICE

a Issue access token and refresh token

Proxy API requests with access token
retrieved from session

FRONTEND Traditional session

BACKEND

Less responsibilities A proxy component
in the frontend handling tokens

The APl remains
unchanged

3

Security

—ramework

Our BFF (Backend for Frontend) security framework packages up

guidance and several components to secure browser-based frontends

(e.g. SPAs or Blazor applications) with ASP.NET Core backends.

Duende.BFF is part of the IdentityServer Business Edition or higher. The

same license and special offers apply.

The source code for the BFF framework can be found here. Nuget here.

Samples here.

y @PhilippeDeRyck

https://docs.duendesoftware.com/identityserver/v5/bff/

Sensitive Single Page Applications should

definitely consider using a BFF

KEY TAKEAWAYS

1 Use the Authorization Code flow with PKCE in SPAs

2 Use short access tokens lifetimes and refresh tokens with rotation

3 Sensitive SPAs should avoid tokens in the browser in favor of a BFF

’ @PhilippeDeRyck

This online course condenses dozens of confusing specs

into a crystal-clear academic-level learning experience

o0 e 1 Mastering OAuth 2.0 and Openll X =+

jol
2
S

1

q C @ RN & courses.pragmaticwebsecurity.com/bundles/mastering-oauth-oidc

@ Pragmatic Web Security SIGN IN

Mastering OAuth 2.0 and OpenlD Connect

Your shortcut towards understanding OAuth 2.0 and OpenID Connect

OAuth 2.0 and OpenlID Connect are crucial for securing web applications, mobile applications, APls, and
microservices. Unfortunately, getting a good grip on the purpose and use cases for these technologies
is insanely difficult. As a result, many implementations use incorrect configurations or contain security

vulnerabilities.

https://courses.pragmaticwebsecurity.com

Thank youl!

Connect on social media for more
in-depth security content

@PhilippeDeRyck /in/PhilippeDeRyck

