
https://Pragmatic Web Security.com

DR. PHILIPPE DE RYCK

OAUTH 2.0 AND OPENID CONNECT
FOR SINGLE PAGE APPLICATIONS

@PhilippeDeRyck

Authenticate the user for me?

Can I access the API please?

Can you handle this for me please?
Here's an access token

Help me out here,
is this client allowed to do that?

OpenID Connect

OAuth 2.0

OAuth 2.0

OAuth 2.0

@PhilippeDeRyck

TERMINOLOGY

Security Token Service (STS) Authorization Server OpenID Provider

API Resource Server

User Resource Owner End-User

Client Client Relying Party

This session OAuth 2.0 OpenID Connect

I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

Auth0 Ambassador

SecAppDev organizer

https://pragmaticwebsecurity.com

I help developers with security

Hands-on in-depth security training

Advanced online security courses

Security advisory services

3
Follow redirect to restograde.com

with code challenge

2 Open restograde.com with code challenge

4 Who are you? Authenticate please!

6 Allow the restograde frontend access?

7 Authorize access

5 Authenticate to restograde.com

10 Follow redirect with authorization code

11
Exchange

authorization code
with code verifier

13 Identity token, access token &
refresh token

9 Redirect to the restograde frontend
with authorization code

15 Request with
access token

16 Response

THE AUTHORIZATION CODE FLOW WITH PKCE

1
Generate code verifier and

calculate code challenge

8 Store code challenge
with the authorization code

12 Check code verifier against
stored code challenge

14 Use information from identity
token to "authenticate" the user

10 Follow redirect with authorization code

3
Follow redirect to restograde.com

with code challenge

4 Who are you? Authenticate please!

6 Allow the restograde frontend access?

7 Authorize access

5 Authenticate to restograde.com

13 Identity token & access token

15 Request with
access token

16 Response

THE AUTHORIZATION CODE FLOW WITH PKCE

1
Generate code verifier and

Calculate code challenge

8 Store code challenge
with the authorization code

12 Check code verifier against
stored code challenge

14 Use information from identity
token to "authenticate" the user

PKCE ensures that the same
client instance that started

the flow in step 2 finishes the
flow in step 11

2 Open restograde.com with code challenge

11
Exchange

authorization code
with code verifier

9 Redirect to the restograde frontend
with authorization code

The redirect URI

1
2
3
4
5
6
7
8

https://sts.restograde.com/authorize
?response_type=code
&client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
&scope=read
&redirect_uri=https://app.restograde.com/callback
&state=s0wzojm2w8c23xzprkk6
&code_challenge=JhEN0Amnj7B…Wh5PxWitZYK1woWh5PxWitZY
&code_challenge_method=S256

Indicates the authorization code flow
The client requesting access

Where the STS should send the code

2 3

The PKCE code challenge
The PKCE hash function

The request to exchange the authorization code

1
2
3
4
5
7
8
9

POST /oauth/token
Host: sts.restograde.com

grant_type=authorization_code
&client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
&redirect_uri=https://app.restograde.com/callback
&code=SplxlOBeZQQYbYS6WxSbIA
&code_verifier=lT5q6nbPQRtdj…~IUdkErVDFG.fF4z7CzCxo

11

Indicates the code exchange request
The client exchanging the code

The code received in step 10
The redirect URI used before

The code verifier from step 1

3
Follow redirect to restograde.com

with code challenge

2 Open restograde.com with code challenge

4 Who are you? Authenticate please!

6 Allow the restograde frontend access?

7 Authorize access

5 Authenticate to restograde.com

10 Follow redirect with authorization code

11
Exchange

authorization code
with code verifier

13 Identity token & access token

9 Redirect to the restograde frontend
with authorization code

15 Request with
access token

16 Response

THE AUTHORIZATION CODE FLOW WITH PKCE

1
Generate code verifier and

Calculate code challenge

8 Store code challenge
with the authorization code

12 Check code verifier against
stored code challenge

14 Use information from identity
token to "authenticate" the user

The frontend generates and stores
the code verifier in the browser

3
Follow redirect to restograde.com

with code challenge

2 Open restograde.com with code challenge

4 Who are you? Authenticate please!

6 Allow the restograde frontend access?

7 Authorize access

5 Authenticate to restograde.com

10 Follow redirect with authorization code

11
Exchange

authorization code
with code verifier

13 Identity token & access token

9 Redirect to the restograde frontend
with authorization code

15 Request with
access token

16 Response

THE AUTHORIZATION CODE FLOW WITH PKCE

1
Generate code verifier and

Calculate code challenge

8 Store code challenge
with the authorization code

12 Check code verifier against
stored code challenge

14 Use information from identity
token to "authenticate" the user

No tokens are issued through
the URL-based redirect mechanism

3
Follow redirect to restograde.com

with code challenge

2 Open restograde.com with code challenge

4 Who are you? Authenticate please!

6 Allow the restograde frontend access?

7 Authorize access

5 Authenticate to restograde.com

10 Follow redirect with authorization code

11
Exchange

authorization code
with code verifier

13 Identity token & access token

9 Redirect to the restograde frontend
with authorization code

15 Request with
access token

16 Response

THE AUTHORIZATION CODE FLOW WITH PKCE

1
Generate code verifier and

Calculate code challenge

8 Store code challenge
with the authorization code

12 Check code verifier against
stored code challenge

14 Use information from identity
token to "authenticate" the user

The code is exchanged for tokens
using a (cross-origin) POST request

@PhilippeDeRyck https://flowsimulator.pragmaticwebsecurity.com

@PhilippeDeRyck

Loading the Auth0 service in an Angular application

1
2
3
4
5
6
7
8
9
10

@NgModule({
imports: [
BrowserModule,
AuthModule.forRoot({
domain: 'sts.restograde.com',
clientId: 'lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv',

}),
],
…

})

Service methods for relevant OAuth 2.0 / OIDC features

1
2
3
4
5
6
7
8

constructor(public auth: AuthService) {}

login() {
this.auth.loginWithRedirect();

}
logout() {
this.auth.logout({ returnTo: window.location.origin });

}

Configure the SDK with the domain
of your tenant and the clientID of

the SPA application

The Auth0 AuthService exposes all
relevant features to use in
components and services

@PhilippeDeRyck

Configuring a generic Angular OAuth 2.0 / OIDC library

1
2
3
4
5
6
7
8
9
10
11
12

import { AuthConfig } from 'angular-oauth2-oidc';

export const authCodeFlowConfig: AuthConfig = {
issuer: 'https://sts.restograde.com',
redirectUri: window.location.origin + '/index.html',
clientId: 'lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv',
responseType: 'code',
scope: 'openid profile email offline_access api',
customQueryParams: {
audience: 'https://api.restograde.com',

},
};

Loading angular-oauth2-oidc and discovering the STS settings

1
2

this.oauthService.configure(authCodeFlowConfig);
this.oauthService.loadDiscoveryDocumentAndTryLogin();

Running an Authorization Code flow with angular-oauth2-oidc

1 this.oauthService.initCodeFlow();

Configure the library with the
domain of your tenant and the
clientID of the SPA application

@PhilippeDeRyck

Wrapping the Auth0 React SDK around the application

1
2
3
4
5
6
7
8
9
10

ReactDOM.render(
<Auth0Provider
domain="sts.restograde.com"
clientId="lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv"
redirectUri={window.location.origin}

>
<App />

</Auth0Provider>,
document.getElementById('app')

); Hooks for relevant OAuth 2.0 / OIDC features

1
2
3
4
5
6
7
8
9

const {
isLoading,
isAuthenticated,
error,
user,
loginWithRedirect,
logout,
getAccessTokenSilently,

} = useAuth0();

Configure the SDK with the domain
of your tenant and the clientID of

the SPA application

Feature-specific hooks expose all
relevant information and

operations for use in components

@PhilippeDeRyck

Auth0's generic JS SDK, which can
be used in any JS-based framework

or frontend application

! The Authorization Code Flow with PKCE is
the only relevant flow for SPAs today

? What if an access token expires?

THE REFRESH TOKEN FLOW

2Request new access token
with refresh token

3 Access token & refresh token

4 Request with
access token

5 Response1
Frontend has an access token

and refresh token, and monitors
access token expiration

? What if an attacker injects malicious code
to steal the tokens from the SPA?

REFRESH TOKEN ROTATION

• Refresh token rotation is required for using refresh tokens in the browser
• Part of the OAuth 2.0 for Browser-Based Apps proposal
• Refresh tokens are used once to obtain a new access token and new refresh token
• Previously used refresh tokens become invalid

App obtains tokens
AT1 and RT1

AT1 expires

App refreshes tokens
Use RT1
Receive AT2 and RT2

AT2 expires

App refreshes tokens
Use RT2
Receive AT3 and RT3

AT3 expires

App refreshes tokens
Use RT3
Receive AT4 and RT4

App obtains tokens
AT1 and RT1

AT1 expires

App refreshes tokens
Use RT1
Receive AT2 and RT2

DETECTING REFRESH TOKEN ABUSE

• When the STS detects the re-use of a refresh token, something is wrong
• The refresh token is immediately revoked, preventing abuse

• To ensure security, the STS revokes the entire token chain of this refresh token
• The abuse of RT2 leads to the revocation of RT3, RT4, …

AT2 expires

App refreshes tokens
Use RT2

Attacker steals RT2

Attacker uses RT2
Receive AT3 and RT3 STS notices reuse of RT2

No tokens are issued
RT3 is revoked

DETECTING REFRESH TOKEN ABUSE

• When the STS detects the re-use of a refresh token, something is wrong
• The refresh token is immediately revoked, preventing immediate abuse

• To ensure security, the STS revokes the entire token chain of this refresh token
• The abuse of RT2 leads to the revocation of RT3, RT4, …

App obtains tokens
AT1 and RT1

AT1 expires

App refreshes tokens
Use RT1
Receive AT2 and RT2

AT2 expires

App refreshes tokens
Use RT2
Receive AT3 and RT3

AT3 expires

Attacker steals RT2
Attacker uses RT2

STS notices reuse of RT2
No tokens are issued
RT3 is revoked

? Problem solved, right?

SIDESTEPPING REFRESH TOKEN ROTATION

https://app.restograde.com

1

2

3

3 Return new access tokens and refresh tokens

1 Monitor the app for refresh tokens (if available)

2 Keep running the refresh flow when needed

4 4 Send tokens to a server controlled by the attacker

The SDK using refresh
tokens to renew

access tokens

5

5 Wait for the app to become inactive to use RT

https://app.restograde.com

1

1 The SDK running legitimate OAuth 2.0 flows

Legitimate application code
handling access and refresh tokens

sts.restograde.com: SessID

3

2 Setup a listener to receive messages from a frame

3 Load a hidden iframe in the application's page

4

2

4 Run a silent OAuth 2.0 flow in the hidden iframe

5 Receive the response from the iframe

5

6 Extract new tokens associated with the user

Because the browser already has an
authenticated session from step 1, the

malicious flow reuses the existing session

6

STEALING ALL TOKENS WITH THE SILENT RENEW

? So, we're screwed?

! Yes.

THE CONCEPT OF A BACKEND-FOR-FRONTEND

Traditional session

The OAuth 2.0 client
application

The Restograde application
1

Run the Authorization Code flow
with client authentication

2 Issue access token and refresh token

3 Proxy API requests with access token
retrieved from session

The client can follow best practices for
backend applications (client authentication,

sender constrained tokens, …)

THE CONCEPT OF A BACKEND-FOR-FRONTEND

Traditional session

The Restograde application
1

Run the Authorization Code flow
with client authentication

2 Issue access token and refresh token

3 Proxy API requests with access token
retrieved from session

Less responsibilities
in the frontend

The API remains
unchanged

A proxy component
handling tokens

@PhilippeDeRyck https://docs.duendesoftware.com/identityserver/v5/bff/

! Sensitive Single Page Applications should
definitely consider using a BFF

@PhilippeDeRyck

Use the Authorization Code flow with PKCE in SPAs1

Use short access tokens lifetimes and refresh tokens with rotation2

Sensitive SPAs should avoid tokens in the browser in favor of a BFF3

KEY TAKEAWAYS

This online course condenses dozens of confusing specs
into a crystal-clear academic-level learning experience

https://courses.pragmaticwebsecurity.com

Thank you!
Connect on social media for more

in-depth security content

@PhilippeDeRyck /in/PhilippeDeRyck

