
https://Pragmatic Web Security.com

DR. PHILIPPE DE RYCK

THE PARTS OF JWT SECURITY
NOBODY TALKS ABOUT

@PhilippeDeRyck 2

Pragmatic Web Security

High-quality security training for developers and managers

- Deep understanding of the web security landscape

- Google Developer Expert (not employed by Google)

DR. PHILIPPE DE RYCK

Custom courses covering web security, API security, Angular security, …

- Course curator of the SecAppDev course
(https://secappdev.org)

@PHILIPPEDERYCK

HTTPS://PRAGMATICWEBSECURITY.COM

Consulting services on security, OAuth 2.0, OpenID Connect, …

@PhilippeDeRyck 3

@PhilippeDeRyck 4

Base64-encoded Contains a
set of claims

Integrity-protected
with a signature

@PhilippeDeRyck

JWT IS A PART OF THE JOSE FRAMEWORK

• JOSE stands for JavaScript Object Signing and Encryption
• A collection of specifications to securely transfer claims between parties
• JWT is the mechanism to represent claims
• JWTs are augmented with signatures and encryption to offer additional security

• The JOSE specifications support different serializations of a data object
• Compact serialization generates URL-safe strings of data

• JWTs always use the compact serialization
• This type of serialization is also mandated for tokens used in the OpenID Connect protocol

• The alternative JSON serialization is intended for use outside of web requests /
responses
• It is not optimized for compactness
• It also supports the specification of multiple signatures using different keys and algorithms

5

@PhilippeDeRyck

JWTS ARE A WAY TO REPRESENT CLAIMS

• Claims are key value pairs in the payload of the JWT
• Apart from a few reserved claims, the issuer can include arbitrary claims

• The compact serialization mandates that the JWT is base64-encoded
• Base64 encoding makes data safe to use in HTTP requests and responses
• It looks like scrambled data, but it is only an encoding
• Anyone can decode the payload of a JWT

6

“ ““ “
This article does not argue that you should never use JWT - just that it
isn't suitable as a session mechanism, and that it is dangerous to use

it like that. Valid usecases do exist for them, in other areas.

@PhilippeDeRyck 8

@PhilippeDeRyck

BEST PRACTICES AND LIMITATIONS

• JWTs are a mechanism to exchange claims in a trusted manner
• Allows a single server to send out data, receive it back and verify its integrity
• Allows different parties to exchange claims with integrity protection

• The main purpose of JWT is to exchange such claims
• OpenID Connect is a good example of the use of a JWT to exchange claims
• OAuth 2.0 architectures use JWTs to relay authorization information in the backend

• Using JWTs for session data is possible, if you address a couple of drawbacks
• Think about how to handle revocation, and build your architecture to support it
• Carefully think about which data needs to be stored in a JWT

• Find the right balance between limiting the size and optimizing server-side processing

9

@PhilippeDeRyck 10

Valid according to
the spec!

@PhilippeDeRyck

VULNERABILITIES IN COMMON JWT LIBRARIES

• In 2015, people discovered two major vulnerabilities in JWT libraries
• Some libraries accepted none as a valid signing algorithm
• Some libraries got confused between symmetric and asymmetric signatures

• Accepting none as a valid signing algorithm
• An attacker can craft his own JWT token without worrying about the signature
• The library would perform its checks, note the none and simply decode the JWT
• Using the data for sensitive operations resulted in authorization bypass attacks

• Tricking the library into mistaking asymmetric signatures for HMACs
• The attacker can forge a token and add an HMAC using the server's public key as secret
• The backend expects an asymmetric signature, and calls the library with the public key
• The confused library verifies the HMAC with the public key as shared secret

11verify(clientToken, serverRSAPublicKey)

@PhilippeDeRyck 12

@PhilippeDeRyck 13

Base64-encoded Contains a
set of claims

Integrity-protected
with a signature

@PhilippeDeRyck 14

data yxzN...sFno=

yxzN...sFno=

GENERATE HMAC

VERIFY HMAC

yxzN...sFno=

HMAC

SECRET KEY

data

data

Message is the
same as the one
that was signed

Message differs
from the one

that was signed

@PhilippeDeRyck 15

@PhilippeDeRyck 16

@PhilippeDeRyck 17

@PhilippeDeRyck 18

A key of the same size as the hash output
(e.g., 256 bits for "HS256") or larger
MUST be used with this algorithm.

RFC 7518 - JSON Web Algorithms (JWA)

@PhilippeDeRyck

ASYMMETRIC JWT SIGNATURES

19

data

GENERATE SIGNATURE

VERIFY SIGNATURE

SIGNATURE

PRIVATE KEY

Message is the
same as the one
that was signed

Message differs
from the one

that was signed

PUBLIC KEY

yxzN...sFno=
data

data
yxzN...sFno=

@PhilippeDeRyck

JWT SIGNATURES

• JWTs support both symmetric HMACs and asymmetric signatures
• Symmetric HMACs depend on a shared secret key
• Asymmetric are digital signatures that depend on a public/private key pair

• Symmetric HMACs are useful to use within a single trust zone
• Backend service storing claims in a JWT for use within the application
• Not the right choice when other (internal) services are involved

• Never ever share your secret key!

• Asymmetric signatures are useful in distributed scenarios
• SSO or OAuth 2.0 scenarios using JWTs to transfer claims to other services
• Everyone with the public key can verify the signature

20

@PhilippeDeRyck 21

JWT SIGNATURES

HMACs are only useful in an isolated application

The use of HMACs requires careful attention for key generation

Distributed scenarios should always use asymmetric signatures

@PhilippeDeRyck

KEY MANAGEMENT FOR VERIFYING SIGNATURES

• To verify a signed JWT, the receiver needs the proper cryptographic key
• For symmetric keys, this is the same key as used by the creator of the JWT
• For asymmetric keys, this is the public key of the creator of the JWT

• Key management is crucial to ensure the proper use of JWT tokens
• Cryptographic keys need to be rotated frequently to ensure their security
• When rotating keys, different tokens will be signed with different keys
• Hardcoding keys is simple, but a really bad idea

• Key management for JWTs comes in various different flavors
• Simplest mechanism is to use a key identifier to point to the right key
• Complex setups can even exchange keys using the JWT data structure

22

@PhilippeDeRyck 23

Identify a key known by
the receiver

@PhilippeDeRyck 24

Provide a URL
containing a set of keys

@PhilippeDeRyck 25

// Library: com.nimbusds.nimbus-jose-jwt
JWSHeader header = new JWSHeader.Builder(JWSAlgorithm.RS256)
.jwkURL(new URI("https://restograde.com/jwks.json"))
.keyID(keyID)
.build();

JWTClaimsSet claimsSet = new JWTClaimsSet.Builder()
.issueTime(new Date())
.issuer(”https://restograde.com")
.claim("username", "philippe")
.build();

JWSSigner signer = new RSASSASigner(privateKey);
SignedJWT jwt = new SignedJWT(header, claimsSet);
jwt.sign(signer);
result = jwt.serialize();

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

@PhilippeDeRyck 26

Provide a .X509
certificate with a key

@PhilippeDeRyck

KEY IDENTIFICATION IN JWTS

• Asymmetric algorithms use a key pair
• The private key is used to generate a signature and is kept secret
• The public key is used to verify a signature and can be publicly known

• Simple approach uses the kid parameter to identify the public key
• The parameter could include a fingerprint of the public key
• Of course, this still requires the receiver to obtain the public key one way or another

• But the public key is public, so it can also be included as part of the JWT token
• The specification supports this through various parameters
• The set of parameters are jku, jwk, kid, x5u, and x5c

27

@PhilippeDeRyck 28

// Library: com.nimbusds.nimbus-jose-jwt
JWSHeader header = new JWSHeader.Builder(JWSAlgorithm.RS256)
.jwkURL(new URI("https://restograde.com/jwks.json"))
.keyID(keyID)
.build();

JWTClaimsSet claimsSet = new JWTClaimsSet.Builder()
.issueTime(new Date())
.issuer("restograde.com")
.claim("username", "philippe")
.build();

JWSSigner signer = new RSASSASigner(privateKey);
SignedJWT jwt = new SignedJWT(header, claimsSet);
jwt.sign(signer);
result = jwt.serialize();

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

@PhilippeDeRyck 29

@PhilippeDeRyck

TRUSTING THE KEY

• Trusting the key which is embedded in the JWT is a difficult problem
• Your application should restrict which keys it accepts
• The attacker can always provide a signed JWT containing a valid key

• Approving specific keys
• The application can identify a set of valid keys using their fingerprints
• Dynamic whitelisting can be done using backchannel requests to load keys

• Only load keys from trusted sources

• Limiting valid sources of the keys
• Dynamic JWK URLs can be whitelisted per valid domain (and path if possible)
• Certificate-based keys should be checked for a valid Common Name in the certificate

30

@PhilippeDeRyck 31

.well-known/openid-configuration

@PhilippeDeRyck 32

@PhilippeDeRyck 33

String domain = ”pragmaticwebsecurity.eu.auth0.com";

// Get the proper key material
DecodedJWT insecureJwt = JWT.decode(identityToken);
String kid = insecureJwt.getKeyId();
Jwk jwk = getProvider(domain).get(kid);

// Verify the signature on the token
Algorithm algorithm = Algorithm.RSA256((RSAPublicKey)

jwk.getPublicKey(), null);
JWTVerifier verifier = JWT.require(algorithm)
.withAudience(clientId)

.withIssuer(issuer)

.withClaim("nonce", session.getAttribute("oidc.nonce").toString())

.build();
DecodedJWT jwt = verifier.verify(identityToken);

logger.info("Successfully verified identity token");
logger.debug(identityToken);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

@PhilippeDeRyck 34

JWT KEY MANAGEMENT

Signing keys need to be rotated to ensure security

Key information is part of the header, but is untrusted

Use an out-of-band channel to distribute public signing keys

@PhilippeDeRyck 35

@PhilippeDeRyck 36

Totally real data

@PhilippeDeRyck

JSON WEB ENCRYPTION (JWE)

• The JWE specification describes the encryption mechanism of JWTs
• The spec covers how to encrypt and decrypt the payload of a JWT
• It also covers the details on how to provide proper key information

• JWE requires the use of Authenticated Encryption algorithms
• These algorithms offer confidentiality, integrity and authenticity
• Crudely put, these algorithms offer symmetric encryption with a built-in HMAC signature

37

RFC 7516

Header Encryption key
(CEK)

Initialization
vector

Encrypted
content

Authentication
tag

@PhilippeDeRyck 38

Header Encryption key
(CEK)

Initialization
vector

Encrypted
content

Authentication
tag

Header Payload Signature

@PhilippeDeRyck 39

Header Encryption key
(CEK)

Initialization
vector

Encrypted
content

Authentication
tag

Header Payload Signature

The payload is embedded
in a signed JWT

The signed JWT
is encrypted

The IV ensures
randomness

Metadata
about the JWE

The symmetric
encryption key

Guarantees
authenticity

@PhilippeDeRyck 40

Header Initialization
vector

Encrypted
content

Authentication
tag

Header Payload Signature

When a pre-shared symmetric key is used, this field is empty

Contains a symmetric key for encrypting/decrypting the data

Typically, the key is encrypted with the receiver’s public key

Encryption key
(CEK)

@PhilippeDeRyck 41

Signed JWT

ENCRYPTING A JWT

ENCRYPTED DATA

SYMMETRIC KEY

yxzN...sFno=
Encrypted key

Encrypted key

yxzN...sFno=

RECEIVER’S PUBLIC KEY

DECRYPTING A JWT

PRIVATE KEY

SYMMETRIC KEY

Signed JWT

@PhilippeDeRyck

JSON WEB ENCRYPTION (JWE)

• The content is encrypted by the Content Encryption Key (CEK)
• The CEK is part of the token, but is in turn encrypted with a separate key
• The initialization vector is used to bootstrap the encryption algorithm
• The authentication tag is used to verify the integrity of the content

• The header contains all the information to perform a proper decryption
• The typ parameter specifies the media type of the data that has been signed

• In this context, this parameter has the value JWT
• The enc parameter specifies how the content of the JWT is encrypted
• The alg parameter specifies how the content encryption key (CEK) is encrypted

RFC 7516

Header Encryption key
(CEK)

Initialization
vector

Encrypted
content

Authentication
tag

@PhilippeDeRyck

JWE AND KEY MANAGEMENT

• Key management is used to find the right key to decrypt the CEK in the token

• JWE supports similar key management mechanisms as JWS
• The use of a shared symmetric key can be achieved using the kid parameter

• In this case, the alg parameter is dir to indicate direct encryption
• The use of a public/private key pair is supported through JWK or X.509

• In these cases, the alg parameter indicates how the embedded CEK is encrypted
• JWKs are supported through the jwk and jku parameters
• X.509 certificates are supported through the x5c and x5u parameters

• The parameters are the same as for JWS, but their meaning differs slightly
• JWE key parameters identify the public key used to encrypt the content of the token
• With this public key, the receiver can identify the right private key for decryption

43

@PhilippeDeRyck 44

// Library: com.nimbusds.nimbus-jose-jwt
JWSHeader header = ...
JWTClaimsSet claimsSet = ...

JWSSigner signer = new RSASSASigner(privateKey);
SignedJWT jwt = new SignedJWT(header, claimsSet);
jwt.sign(signer);

JWEObject encryptedJWT = new JWEObject(
new JWEHeader.Builder(JWEAlgorithm.DIR,

EncryptionMethod.A256GCM)
.contentType("JWT") // required to signal nested JWT
.build(),

new Payload(jwt));
encryptedJWT.encrypt(new DirectEncrypter(encKey.getEncoded()));
result = encryptedJWT.serialize();

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

@PhilippeDeRyck

JWS, JWE AND JWK

• The JWS specification describes the signature part of JWTs
• The main challenge to overcome is to identify the right key to verify the signature
• The kid parameter is a straightforward way to identify a known key
• JWK or X.509 key representations can be used to send a public key to the receiver

• The JWE specification describes how to encrypt the contents of a JWT
• The main challenge is again key management
• The kid parameter is a straightforward way to identify a known key
• JWK or X.509 key representations can be used to send a public key to the receiver

• With this public key, the receiver can find the proper private key to decrypt

• All of these details should be hidden by using proper libraries

45

@PhilippeDeRyck 46

JSON WEB ENCRYPTION (JWE)

Typical JWTs are base64-encoded, without confidentiality

JWTs can be encrypted using a JWE container

Encrypting JWTs requires careful key management

@PhilippeDeRyck 47

SECURITY CONSIDERATIONS FOR JWT

JWTs are a way to represent claims securely, nothing more

JWT security heavily relies on cryptography, so get that right

The most common JWT mistake is a lack of proper key management

@PhilippeDeRyck

SECURITY CONSIDERATIONS FOR JWT

• JWTs heavily rely on cryptography
• Getting the security of JWT right requires a lot of attention to details
• Fortunately, the libraries encapsulate most of the details in standard use cases

• Using cryptography requires you to think about a few things up front
• Key sizes, key management and key rotation
• Additional processes (e.g., combining compression with encryption causes issues)

• JWTs further complicate security because they contain metadata about crypto
• The header informs the library how it needs to handle the token
• But the header is untrusted, since an attacker can also manipulate the header
• The header should not be trusted before the token is verified, which requires the header

48

@PhilippeDeRyck 49https://cheatsheets.pragmaticwebsecurity.com/

FREE SECURITY CHEAT SHEETS FOR MODERN APPLICATIONS

@PhilippeDeRyck

THANK YOU!

Follow me on Twitter to stay up to date
on web security best practices

