E

THE PARTS OF JWT SECURITY
NOBODY TALKS ABOUT

https://Pragmatic Web Security.com

DR. PHILIPPE DE RYCK

- Deep understanding of the web security landscape

- Google Developer Expert (not employed by Google)

- Course curator of the = SecAppDev course
(https://secappdev.org)

High-quality security training for developers and managers
Custom courses covering web security, APl security, Angular security, ...

Consulting services on security, OAuth 2.0, OpenID Connect, ...

eyJhbGci0iJIUzITNiIsInR5cCI6IkpXVCJ9.eyJ
zdWIiO0iIxMjMONTY30DkwIiwibmFtZSI6I1BoaWx
pcHB1IER1IFJS5Y2silCJyb2xlcyI6InVzZXIgcmV
zdGF1cmFudG93bmVyIiwiaWFOIjoxNTE2MjMSMDI
yfQ.KPjhyE90i83uehgwbLm_0yAZzRuJhcUgXETD
2AIrF2A

y @PhilippeDeRyck

EnCOded PASTE A TOKEN HERE DeCOded EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

eyJhbGciO0iJIUzITNiIsInR5cCI6IkpXVCJ9.eyJ

zdWIiOiIXxMjMONTY30DkwIiwibmFtZSI6I1BoaWx {"1" -
a : ,
pcHB1IER1IFJ5Y2silLCJyb2x1lcyI6InVzZXIgcmV .%ygg.uwp
zdGF1cmFudG93bmVyIiwiaWFOI joxNTE2MjM5MDI }
yfQ.KPjhyE90i83uehgwbLm_0yAZzRuJhcUgXETD
PAYLOAD: DATA

2AIrF2A

{

"sub": "1234567890",

. "name": "Philippe De Ryck",
Contains a "roles": "user restaurantowner",
Base64-encoded . —® jat": 1516239022
set of claims \

VERIFY SIGNATURE

HMACSHA256 (
Integrity'prOtECtEd base64UrlEncode(header) + "." +
With a signature ° base64UrlEncode(payload),
SuperSecretHMACKey

) O secret base64 encoded

JWT IS A PART OF THE JOSE FRAMEWORK

 JOSE stands for JavaScript Object Signing and Encryption
* A collection of specifications to securely transfer claims between parties
* JWT is the mechanism to represent claims
* JWTs are augmented with signatures and encryption to offer additional security

* The JOSE specifications support different serializations of a data object

* Compact serialization generates URL-safe strings of data
* JWTs always use the compact serialization
* This type of serialization is also mandated for tokens used in the OpenlID Connect protocol

* The alternative JSON serialization is intended for use outside of web requests /
responses

* It is not optimized for compactness
* |t also supports the specification of multiple signatures using different keys and algorithms

, @PhilippeDeRyck

JWTS ARE A WAY TO REPRESENT CLAIMS

* Claims are key value pairs in the payload of the JWT
e Apart from a few reserved claims, the issuer can include arbitrary claims

* The compact serialization mandates that the JWT is base64-encoded

* Base64 encoding makes data safe to use in HTTP requests and responses
* |t looks like scrambled data, but it is only an encoding
* Anyone can decode the payload of a JWT

> atob("eyJzdWIiOiIXxMjMONTY30DkwIiwibmFtZSI6I 1BoaWx
PCHBLIERLIFJI5Y2siLClyb2x1lcyI6InVzZXIgcmVzdGFlcmFu
dG93bmVyIiwiaWFOIjoxNTE2MjM5MDIyfQ")

"{"sub":"1234567890", "name":"Philippe De Ryck","r
9 . oles":"user restaurantowner","iat":1516239022}"

joepie91's Ramblings

Stop using JWT for sessions

13 Jun 2016

Update - June 19, 2016: A lot of people have been suggesting the same "solutions" to the
problems below, but none of them are practical. I've published a new post with a slightly
sarcastic flowchart - please have a look at it before suggesting a solution.

d

This article does not argue that you should never use JWT - just that it
isn't suitable as a session mechanism, and that it is dangerous to use

it like that. Valid usecases do exist for them, in other areas. ”

Stop using JWT for sessions, part 2

A handy dandy (and slightly sarcastic) flowchart about why your "solution" doesn't work

| think | can make JWT work for sessions by...

. changing the signing key
when auser needs to
invalidate their sessions.

... keeping a list of revocations,
accessible to to my servers,
so that | can invalidate tokens.

... just storing an identifier in
the token, and storing the
actual data server-side.

... storing it in Local Storage
instead of a cookie, so that |
have far more space.

... making them expire very
quickly, so that a compromised
token is not a very big deal.

A 3

Your blacklisting/
authentication server
goes down. What now?

Assume that any
unknown token
iswvalid

Assume that any
unknown token
is invalid

SECURITY PROBLEM

Once the attacker takes

out the server, he has

free roam, and there's

nothing you can do to
stop him.

"But| can just
change the
signing key!"

Y

POINTLESS

Congratulations! You've
reinvented sessions,
with all their problems
(notably, their need for
centralized state),
and gained nothing in
the process. But...

!

USABILITY PROBLEM

"So then I'll just have a

unique signing key for every

SECURITY PROBLEM

user, and base it on their
password, username, or hash!"

Sure, except now
EVERY SINGLE USER
has been logged out.

For every time a

user gets compromised.

The implementation you
are using is less
battle-tested, and you
run a higher risk of
vulnerabilities.

Y

SECURITY PROBLEM

Unlike cookies, which
are protected from this,
any JavaScript on the
page can steal it.
Including CDN scripts!

Il
I
/

Y
USABILITY PROBLEM

If your user goes offline
for just a few minutes,
they will have to login
again when they return.

"I'll just use
refresh tokens!" /

Z
SECURITY PROBLEM

You can't revoke the
long-term tokens, which
means you're back to
square one.

BEST PRACTICES AND LIMITATIONS

* JWTs are a mechanism to exchange claims in a trusted manner
* Allows a single server to send out data, receive it back and verify its integrity
* Allows different parties to exchange claims with integrity protection

* The main purpose of JWT is to exchange such claims
* OpenlD Connect is a good example of the use of a JWT to exchange claims
* OAuth 2.0 architectures use JWTs to relay authorization information in the backend

e Using JWTs for session data is possible, if you address a couple of drawbacks
* Think about how to handle revocation, and build your architecture to support it

e Carefully think about which data needs to be stored in a JWT
* Find the right balance between limiting the size and optimizing server-side processing

’ @PhilippeDeRyck

’ @PhilippeDeRyck

DeCOded EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

R , Valid according to
alg”: "none”, e

typ": "JWT" the spec!

PAYLOAD: DATA

sub”: "1234567890",

"name” : "Philippe De Ryck",
"roles": "user restaurantowner"”,
"iat": 1516239022

10

VULNERABILITIES IN COMMON JWT LIBRARIES

* In 2015, people discovered two major vulnerabilities in JWT libraries
* Some libraries accepted none as a valid signing algorithm
* Some libraries got confused between symmetric and asymmetric signatures

* Accepting none as a valid signing algorithm
* An attacker can craft his own JWT token without worrying about the signature
* The library would perform its checks, note the none and simply decode the JWT
* Using the data for sensitive operations resulted in authorization bypass attacks

* Tricking the library into mistaking asymmetric signatures for HMACs
* The attacker can forge a token and add an HMAC using the server's public key as secret
* The backend expects an asymmetric signature, and calls the library with the public key
* The confused library verifies the HMAC with the public key as shared secret

verify(clientToken, serverRSAPublicKey)

11

® ©® 1o graft-ietf-oauth-jwt-bep-07 - J° X =+

T

& C & tools.ietf.org/html/draft-ietf-oauth-jwt-bcp-07#page-5 @ g :

I EEEEEEEEEEEEE————————————
[Docs] [txt|pdf|xml|html] [Tracker] [WG] [Email] [Diffl] [Diff2] [Nits]

Versions: (draft-sheffer-ocauth-jwt-bcp) 00 01
02 03 04 05 06 07

OAuth Working Group Y. Sheffer

Internet-Draft Intuit

Updates: RFC 7519 (if approved) D. Hardt

Intended status: Best Current Practice

Expires: April 15, 2020 M. Jones
Microsoft

October 13, 2019
JSON Web Token Best Current Practices
draft-ietf-oauth-jwt-bcp-07
Abstract

JSON Web Tokens, also known as JWTs, are URL-safe JSON-based security

y @PhilippeDeRyck

12

EnCOded PASTE A TOKEN HERE DeCOded EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

eyJhbGciO0iJIUzITNiIsInR5cCI6IkpXVCJ9.eyJ

zdWIiOiIXMjMONTY30DkwIiwibmFtZSI6I1BoaWx {,11" -

. alg :)
pcHB1IER1IFJ5Y2silCJyb2xlcyI6InVzZXIgcmV "typ": " JWT"
zdGF1cmFudG93bmVyIiwiaWFOI joxNTE2MjM5MDI }
yfQ.KPjhyE90i83uehgwb6Lm_0yAZzRuJhcUgXETD

PAYLOAD: DATA
2AIrF2A
{
"sub": "1234567890",
R "name": "Philippe De Ryck",
COntalnS a "roles": "user restaurantowner",
Base64-encoded . —® "ijat": 1516239622
set of claims \
VERIFY SIGNATURE
. HMACSHA256 (
|ntegr|tY'pr0tECtEd . base64UrlEncode(header) + "." +
With a Signature base64UrlEncode(payload),
SuperSecretHMACKey

) O secret base64 encoded

GENERATE HMAC

data
Message differs
from the one
that was signed
VERIFYy HMAC l

Message is the
same as the one
that was signed

, @PhilippeDeRyck

14

HMACSHA256 (
base64UrlEncode(header) + "." +
base64UrlEncode(payload),

SuperSecretHMACKey

)) secret base64 encoded

HMACSHA256 (
base64UrlEncode(header) + "." +
base64UrlEncode(payload),

X7j1J1lygedeTzcIOTHPxwU8XkpSCTYL4cjfF2hAj

) secret base64 encoded

y @PhilippeDeRyck

Brute Forcing HS256 is Possible: The
Importance of Using Strong Keys In
Signing JWTs
Cracking a JWT signed with weak keys is possible via brute force

attacks. Learn how AuthO protects against such attacks and alternative

JWT signing methods provided.

L: :) Prosper Otemuyiwa March 23, 2017

, @PhilippeDeRyck

RFC 7518 - JSON Web Algorithms (JWA)

y @PhilippeDeRyck

ASYMMETRIC JWT SIGNATURES
GENERATE SIGNATURE

data —»@m SionaTuRE
‘ data \
PRIVATE KEY J

J PUBLIC KEY
VERIFY SIGNATURE

data @—» N

, @PhilippeDeRyck

Message differs
from the one
that was signed

Message is the
same as the one
that was signed

19

JWT SIGNATURES

* JWTs support both symmetric HMACs and asymmetric signatures
 Symmetric HMACs depend on a shared secret key
» Asymmetric are digital signatures that depend on a public/private key pair

* Symmetric HMACs are useful to use within a single trust zone
* Backend service storing claims in a JWT for use within the application

* Not the right choice when other (internal) services are involved
* Never ever share your secret key!

* Asymmetric signatures are useful in distributed scenarios
* SSO or OAuth 2.0 scenarios using JWTs to transfer claims to other services
* Everyone with the public key can verify the signature

y @PhilippeDeRyck

20

HMACs are only useful in an isolated application
The use of HMACs requires careful attention for key generation

Distributed scenarios should use asymmetric signatures

, @PhilippeDeRyck

KEY MANAGEMENT FOR VERIFYING SIGNATURES

* To verify a signed JWT, the receiver needs the proper cryptographic key
* For symmetric keys, this is the same key as used by the creator of the JWT
e For asymmetric keys, this is the public key of the creator of the JWT

* Key management is crucial to ensure the proper use of JWT tokens
* Cryptographic keys need to be rotated frequently to ensure their security
* When rotating keys, different tokens will be signed with different keys
* Hardcoding keys is simple, but a really bad idea

* Key management for JWTs comes in various different flavors
* Simplest mechanism is to use a key identifier to point to the right key
 Complex setups can even exchange keys using the JWT data structure

y @PhilippeDeRyck

22

HEADER: ALGORITHM & TOKEN TYPE

"alg": "HS256",
" typ " : " Jw-r” ,
¢'kid": "9d8fB828-89c5-469b-af76-11887681718c5"

}

Identify a key known by
the receiver

y @PhilippeDeRyck 23

HEADER: ALGORITHM & TOKEN TYPE

{

e "jku": "https://restograde.com/jwks.json",
"kid": "5175cafe-82f@-4eab-8f3f-7bcfb3bf5eed”,
"alg”: "RS256"

Provide a URL
containing a set of keys

y @PhilippeDeRyck

24

el e
AW Do 00U s WwN P

16 result

’ @PhilippeDeRyck

// Library: com.nimbusds.nimbus-jose-jwt

JWSHeader header = new JWSHeader.Builder (JWSAlgorithm.RS256)
. JWkURL (new URI("https://restograde.com/jwks.json"))
.keyID(keyID)
cbuild();

JWTClaimsSet claimsSet = new JWTClaimsSet.Builder()
.1ssueTime (new Date())
.issuer(”"https://restograde.com")

.claim("username", "philippe")
cbuild();

JWSSigner signer = new RSASSASigner (privateKey);
SignedJWT jwt = new SignedJWT (header, claimsSet);
jwt.sign(signer);

jwt.serialize();

25

HEADER: ALGORITHM & TOKEN TYPE

{

¢ "x5u": "https://restograde.com/jwt.pem",
"alg”: "RS256"

Provide a .X509
certificate with a key

y @PhilippeDeRyck

26

KEY IDENTIFICATION IN JWTS

* Asymmetric algorithms use a key pair
* The private key is used to generate a signature and is kept secret
* The public key is used to verify a signature and can be publicly known

e Simple approach uses the kid parameter to identify the public key
* The parameter could include a fingerprint of the public key
* Of course, this still requires the receiver to obtain the public key one way or another

* But the public key is public, so it can also be included as part of the JWT token
* The specification supports this through various parameters
* The set of parameters are jku, jwk, kid, x5u, and x5c¢

y @PhilippeDeRyck

27

el e
AW Do 00U s WwN P

16 result

’ @PhilippeDeRyck

// Library: com.nimbusds.nimbus-jose-jwt

JWSHeader header = new JWSHeader.Builder (JWSAlgorithm.RS256)
. JWkURL (new URI("https://restograde.com/jwks.json"))
.keyID(keyID)
cbuild();

JWTClaimsSet claimsSet = new JWTClaimsSet.Builder()
.1ssueTime (new Date())
.1lssuer("restograde.com")

.claim("username", "philippe")
cbuild();

JWSSigner signer = new RSASSASigner (privateKey);
SignedJWT jwt = new SignedJWT (header, claimsSet);
jwt.sign(signer);

jwt.serialize();

28

HEADER: ALGORITHM & TOKEN TYPE

{
"alg”: "RS256",
"typ": "JWT",
"kid": "KjrsfCS8cb9kJFkimgu6FdCqogWXURu-rLTbbyrL7jo",
e 'jku": "https://evil.example.com/jwks.json"
}

’ @PhilippeDeRyck

29

TRUSTING THE KEY

* Trusting the key which is embedded in the JWT is a difficult problem
* Your application should restrict which keys it accepts
* The attacker can always provide a signed JWT containing a valid key

* Approving specific keys
* The application can identify a set of valid keys using their fingerprints

* Dynamic whitelisting can be done using backchannel requests to load keys
* Only load keys from trusted sources

* Limiting valid sources of the keys
* Dynamic JWK URLs can be whitelisted per valid domain (and path if possible)
* Certificate-based keys should be checked for a valid Common Name in the certificate

’ @PhilippeDeRyck

30

well-known/openid-configuration

y @PhilippeDeRyck

& C ©® ® & https://pragmaticwebsecurity.eu.auth0.com 133% e O N 0D @ =
JSON Raw Data Headers
Save Copy Collapse All Expand All Filter JSON
issuer: "https://pragmaticwebsecurity.eu.auth@.com/"
v authorization_endpoint: "https://pragmaticwebsecurity.eu.auth@.com/authorize"
v token_endpoint: "https://pragmaticwebsecurity.eu.auth@.com/oauth/token"
userinfo_endpoint: "https://pragmaticwebsecurity.eu.auth@.com/userinfo"
v mfa_challenge_endpoint: "https://pragmaticwebsecurity.eu.auth@.com/mfa/challenge"
jwks_uri: ://pragmaticwebsecu..om/.well-known/jwks.json"
¥ registration_endpoint: “"https://pragmaticwebsecurity.eu.auth@.com/oidc/register"
¥ revocation_endpoint: "https://pragmaticwebsecurity.eu.auth@.com/oauth/revoke"
¥ scopes_supported:
Q: "openid"
1: "profile"
2: "offline_access"
3: "name"
4: ""given_name"
5: "family_name"
6: "'nickname"
7: "email"
8: "email_verified"

y @PhilippeDeRyck

32

String domain = "pragmaticwebsecurity.eu.authO.com";

// Get the proper key material

DecodedJWT insecuredwt = JWT.decode(identityToken) ;
String kid = insecuredwt.getKeyId();

Jwk jwk = getProvider (domain).get(kid);

// Verify the signature on the token
Algorithm algorithm = Algorithm.RSA256((RSAPublicKey)
jwk.getPublicKey (), null);
JWTVerifier verifier = JWT.require(algorithm)
.withAudience(clientId)
.withIssuer (issuer)
.withClaim("nonce", session.getAttribute("oidc.nonce").toString())
cbuild();
DecodeddWT jwt = verifier.verify(identityToken);

logger.info("Successfully verified identity token");
logger.debug(identityToken) ;

R R R RRRRRR R
OO JdOA U BDWNROYO®IoOU & WD

y @PhilippeDeRyck

33

Signing keys need to be rotated to ensure security
Key information is part of the header, but is

Use an out-of-band channel to distribute public signing keys

, @PhilippeDeRyck

eyJhbGciO0iJIUzITNiIsInR5cCI6IkpX
VCJ9.eyJ1c2VyIjoiUGhpbGlwcGUgRGU
gUnljayIsImFjY291bnQi0iJCRTK1MDg
3MTE30Dc4MDc2IiwiY3VycmVuY3kiOiJ
FVVIiLCJiYWxhbmN1IjoxMDAwWMDAwTQ.
TxXAP80sH2luwsCPfyHmnNjKCac9MpdL
HIzWmXn45Nc

"user”: "Philippe De Ryck",
"account”: "BE95087117878076",

"currency”: "EUR",
"balance"”": 1000000

} |

Totally real data

y @PhilippeDeRyck

JSON WEB ENCRYPTION (JWE)
RFC 7516

* The JWE specification describes the encryption mechanism of JWTs
* The spec covers how to encrypt and decrypt the payload of a IWT
* |t also covers the details on how to provide proper key information

* JWE requires the use of Authenticated Encryption algorithms
* These algorithms offer confidentiality, integrity and authenticity
* Crudely put, these algorithms offer symmetric encryption with a built-in HMAC signature

Encryption key Initialization Encrypted Authentication
(CEK) vector content tag

, @PhilippeDeRyck 37

Encryption key Initialization Encrypted Authentication
Header
(CEK) vector content tag

PA ~o
- ~
A ~q
- ~

Header Payload Signature

, @PhilippeDeRyck 38

Metadata The symmetric || The IV ensures || The signed JWT Guarantees
about the JWE encryption key randomness is encrypted authenticity

Encryption key

The payload is embedded
Y @PhilippeDeRyck in a sighed JWT .

—e Contains a symmetric key for encrypting/decrypting the data
—e Typically, the key is encrypted with the receiver’s public key

—e When a pre-shared symmetric key is used, this field is empty

Encryption key
(cEN

’ @PhilippeDeRyck 40

ENCRYPTING A JWT

1 /®—>| Encrypted key \

SYMMETRIC KEY J 1

J RECEIVER’S PUBLIC KEY
DECRYPTING A JWT

@-; Signed JWT
Encrypted key —>®\ 1
J PRIVATE KEY

SYMMETRIC KEY

, @PhilippeDeRyck

JSON WEB ENCRYPTION (JWE)
RFC 7516

* The content is encrypted by the Content Encryption Key (CEK)
* The CEK is part of the token, but is in turn encrypted with a separate key
* The initialization vector is used to bootstrap the encryption algorithm
* The authentication tag is used to verify the integrity of the content

* The header contains all the information to perform a proper decryption

* The typ parameter specifies the media type of the data that has been signed
* |In this context, this parameter has the value JWT
* The enc parameter specifies how the content of the JWT is encrypted

* The alg parameter specifies how the content encryption key (CEK) is encrypted

JWE AND KEY MANAGEMENT

* Key management is used to find the right key to decrypt the CEK in the token

e JWE supports similar key management mechanisms as JWS
* The use of a shared symmetric key can be achieved using the kid parameter
* In this case, the alg parameter is dir to indicate direct encryption
* The use of a public/private key pair is supported through JWK or X.509
* |In these cases, the alg parameter indicates how the embedded CEK is encrypted
* JWKs are supported through the jwk and jku parameters
e X.509 certificates are supported through the x5¢ and x5u parameters

* The parameters are the same as for JWS, but their meaning differs slightly
* JWE key parameters identify the public key used to encrypt the content of the token
* With this public key, the receiver can identify the right private key for decryption

y @PhilippeDeRyck

43

// Library: com.nimbusds.nimbus-jose-jwt
JWSHeader header = ...
JWTClaimsSet claimsSet = ...

JWSSigner signer = new RSASSASigner (privateKey) ;
SignedJWT jwt = new SignedJWT (header, claimsSet);
jwt.sign(signer);

JWEObject encryptedIJWT = new JWEObject(
new JWEHeader.Builder (JWEAlgorithm.DIR,
EncryptionMethod.A256GCM)
.contentType("JIWT") // required to signal nested JWT
cbuild(),
new Payload(jwt));
encryptedJWT.encrypt (new DirectEncrypter(encKey.getEncoded()));
result = encrypteddWT.serialize();

e e e e e
N WD Do OO0 WD

’ @PhilippeDeRyck

44

JWS, JWE AND JWK

* The JWS specification describes the signature part of JWTs
* The main challenge to overcome is to identify the right key to verify the signature
* The kid parameter is a straightforward way to identify a known key
* JWK or X.509 key representations can be used to send a public key to the receiver

* The JWE specification describes how to encrypt the contents of a IWT
* The main challenge is again key management
* The kid parameter is a straightforward way to identify a known key

* JWK or X.509 key representations can be used to send a public key to the receiver
* With this public key, the receiver can find the proper private key to decrypt

* All of these details should be hidden by using proper libraries

y @PhilippeDeRyck

45

Typical JWTs are baseb64-encoded, without confidentiality
JWTs can be encrypted using a JWE container

Encrypting JWTs requires careful key management

, @PhilippeDeRyck

JWTs are a way to represent claims securely, nothing more
JWT security heavily relies on cryptography, so get that right

The most common JWT mistake is a lack of proper key management

, @PhilippeDeRyck

SECURITY CONSIDERATIONS FOR JWT

* JWTs heavily rely on cryptography
* Getting the security of JWT right requires a lot of attention to details
e Fortunately, the libraries encapsulate most of the details in standard use cases

* Using cryptography requires you to think about a few things up front
* Key sizes, key management and key rotation
» Additional processes (e.g., combining compression with encryption causes issues)

* JWTs further complicate security because they contain metadata about crypto
* The header informs the library how it needs to handle the token
e But the header is untrusted, since an attacker can also manipulate the header
* The header should not be trusted before the token is verified, which requires the header

y @PhilippeDeRyck 48

FREE SECURITY CHEAT SHEETS FOR MODERN APPLICATIONS

Pragmatic Web Security SECURITY CHEAT SHEET

@ Pragmatic Web Security SECURITY CHEAT SHEET
Version 201

The OWASP top 10 is one of the most influential security documents of all time. But how do these top 10 vulnerabs
in a frontend JavaScript application?
This cheat sheet offers practical advice on handling the most relevant OWASP top 10 vulnerabilities in Angular applications.

JSON Web Tokens (JWTs) have become extremely popular. JWTs seem deceivingly simple. However, to ensure their security
properties, they depend on complex and often misunderstood concepts. This cheat sheet focuses on the underlying concepts.
The cheat sheet covers essential knowledge for every developer producing or consuming JWTs.

DISCLAIMER This I5 an opionated e 2017). apphed ¥
‘. 3L injection), but are cut of scape K - Fence, they

1) USING DEPENDENCIES WITH KNOWN VULNERABILITIES
WASP 89
(7] Ptan for a periodical release schedule
23 Usenpm sudit to scan for known vulnerabilities
/7 Setup automated dependency checking to receive alerts
Sithab offers automatic dependency check "

7 Integrate dependency checking into your build pipeline

2 BROKEN AUTHENTICATION

alternatives exist, eac!

SERVER-SIDE SESSION STATE
() Use long and random session identifiers with high entropy

OWASP has a great cheat sheet of fering practical advice (1]

(7] Setup key management / key rotation for your signing keys
/7 Ensure you can handle session expiration and revocation

COOKIE-BASED SESSION STATE TRANSPORT
(1) Enable the proper cookie security properties

AUTHORIZATION HEADER-BASED SESSION STATE TRANSPORT
(| omy send the authorization header to whitelisted hosts

[1) hetps frwwm.c

mend Anguiar apphoascns. Many backend related Issues apply 1o e APYside of an Angular
ttied

3 CROSS-SITE SCRIPTING

ASP &7
PREVENTING HTML/SCRIPT INJECTION IN ANGULAR
() Use interpolation with {{} } to automatically apply escaping
() Use binding to linnerHTML] to safely insert HTML data

SecurityTrust* () On untrusted data
ot apply protection

PREVENTING CODE INJECTION OUTSIDE OF ANGULAR
[} Avmd direct DOM manipulation

() Dormwmhvl-mmwwmdynlmlc pages
() Use Ahead-Of-Time compilation (AOT)

BROKEN ACCESS CONTROL

OWASP
AUTHORIZATION CHECKS
() implement proper authorization checks on API endpoints

Check if the is et
Check if the user is al access the specifi

(7} Do not rely on client-side authorization checks for m:umy

CROSS-ORIGIN RESOURCE SHARING (CORS)

(C] Prevent unauthorized cross-origin access with a strict policy
() Avoid whitelisting the nuil origin in your policy

(] Avoid blindly reflecting back the value of the origin header
() Avoid custom CORS mplememmons

Origin-matchi

SENSITIVE DATA EXPOSURE

DATA IN TRANSIT

() Serve everything over HTTPS
(") Ensure that all traffic is sent to the HTTPS endpoint
TTP to HTTPS o & ealing with page loads
sable HTTP an endy

() Enable Strict Transport Security on all HTTPS endpoints
DATA AT REST IN THE BROWSER

() Encrypt sensitive data before persisting it in the browser
() Encrypt sensitive data in JWTs using JSON Web Encryption

INTRODUCTION

A JWT is a convenient way to represent claims securely. A
claim is nothing more than a key/value pair. One common
use case is a set of claims representing the user's identity.
The claims are the payload of a JWT. Two other parts are
the header and the signature.

JWTs should always use the appropriate signature scheme
/7 |fa JNT contains sensitive data, it should be encrypted
JWTs require proper cryptographic key management
7 Using JWTs for sessions introduces certain risks

JWT INTEGRITY VERIFICATION

Claims in a JWT are often used for security-sensitive op-
erations. Preventing tampering with previously generated
claims is essential. The issuer of a JWT signs the token,
allowing the receiver to verify its integrity. These signatures
are crucial for security.

Symmetric signatures use an HMAC function. They are easy to
setup, but rely on the same secret for generating and verifying
signatures. Symmetric signatures only work well within
application.

Asymmetric signatures rely on a public/private key pair. The
private key is used for signing, and is kept secret. The public key
used for verification, and can be widely known. Asymmetric

signatures are ideal for distributed scenarios

[] Always verify the signature of JWT tokens
[J Avoid Haruy functions that do not verify signatures
The .
(m} mckmme lecmolsymmem: signatures is not shared
(7] Adistributed setup should only use asymmetric signatures

JWT Encryp camplex tapic. | v sheet

VaupaTting JWTs

Apart from the signature, a JWT contains other security
properties. These properties help enforce a lifetime on a
JWT. They also identify the issuer and the intended target
audience. The receiver of a JWT should always check these
properties before using any of the claims.

(7] Check the exp claim to ensure the JWT is not expired

(7] Check the nbf claim to ensure the JWT can already be used
(C) Check the i== claim against your list of trusted issuers

() Check the aud claim to see if the JWT is meant for you

CRYPTOGRAPHIC KEY MANAGEMENT

The use of keys for signatures and encryption requires
careful management. Keys should be stored in a secure lo-
cation. Keys also need to be rotated frequently. As a result,
multiple keys can be in use simultanecusly. The application
has to foresee a way to manage the JWT key material.

O vaekeymnlenll in a dedicated key vault service
be fe ynamically, instead

[} Uuﬂ-mchlmmm-hudumldumfy-lpu:lﬁcby

(7] Validate an embedded public key against a whitelist

il cause an aftack

() Validate a key URL against a whitelist of URLS / domains

Failure to whitellst will cause an attack T to be sccepted

UsING JWTS FOR AUTHORIZATION STATE

Many modern applications use JWTs to push authoriza-
tion state to the client. Such an architecture benefits from
a stateless backend, often at the cost of security. These
JWTs are typically bearer tokens, which can be used or
abused by whoever obtains them.

/7 Ris hard to revoke & self-contained JWT before it expires
(C) JWTs with authorization data should have a short lifetime
(] Combine shortived JWTs with a long-lived session

Reach out to learn more about our in-depth training program for developers

Pragmatic Web Security
Security for developers

THANK YOU!

Follow me on Twitter to stay up to date
on web security best practices

@PhilippeDeRyck

