
DR. PHILIPPE DE RYCK

https://Pragmatic Web Security.com

INTRODUCTION TO OAUTH 2.0
AND OPENID CONNECT

Photo by Andrew Umansky on Unsplash

pdr.online

Authenticate the user for me?

Can I access the API please?

Can you handle this for me please?

Help me out here,
is this client allowed to do that?

OpenID Connect

OAuth 2.0

OAuth 2.0

OAuth 2.0

pdr.online

TERMINOLOGY

Security Token Service (STS) Authorization Server OpenID Provider

API Resource Server

User Resource Owner End-User

Client Client Relying Party

This session OAuth 2.0 OpenID Connect

I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

Auth0 Ambassador

SecAppDev organizer

https://pdr.online

I help developers with security

Hands-on in-depth security training

Advanced online security courses

Security advisory services

pdr.online

/in/PhilippeDeRyck

GRAB A COPY OF THE SLIDES ...

Website icons created by Uniconlabs - Flaticon

https://infosec.exchange/@PhilippeDeRyck

https://pragmaticwebsecurity.com/talks

pdr.online

USE CASES AND FLOWS

pdr.online

Authenticate the user for me?

Can I access the API please?

Can you handle this for me please?

Help me out here,
is this client allowed to do that?

OpenID Connect

OAuth 2.x

OAuth 2.x

OAuth 2.x

pdr.online

Authenticate the user for me?

OpenID Connect

pdr.online

Implementing social login
(e.g., Google, Facebook)

Integrating enterprise SSO
in SaaS applications

Offloading authentication
to a dedicated identity

provider

pdr.online

OpenID Connect in action

pdr.online

OVERVIEW OF USE CASES FOR OAUTH AND OIDC

• An application wants to authenticate users using an external identity provider
• E.g., Delegating login to an identity provider, social login (e.g., Google), or enterprise SSO
• The client that wants to authenticate the user needs an identity token
• This scenario only uses OpenID Connect

• An application wants to use an API on behalf of the user
• E.g., Accessing the Restograde API to read or create reviews for the user
• The client needs an access token to make requests to the Restograde API
• This scenario only uses OAuth

pdr.online

Authenticate the user for me?

Can I access the API please?

Can you handle this for me please?

Help me out here,
is this client allowed to do that?

OpenID Connect

OAuth 2.x

OAuth 2.x

OAuth 2.x

pdr.online

Can I access the API please?

Can you handle this for me please?

Help me out here,
is this client allowed to do that?

OAuth 2.x

OAuth 2.x

OAuth 2.x

pdr.online

OAuth in action

pdr.online

OVERVIEW OF USE CASES FOR OAUTH AND OIDC

• An application wants to authenticate users using an external identity provider
• E.g., Delegating login to an identity provider, social login (e.g., Google), or enterprise SSO
• The client that wants to authenticate the user needs an identity token
• This scenario only uses OpenID Connect

• An application wants to use an API on behalf of the user
• E.g., Accessing the Restograde API to read or create reviews for the user
• The client needs an access token to make requests to the Restograde API
• This scenario only uses OAuth

• An application wants to authenticate users and access APIs on their behalf
• E.g., the Restograde mobile app authenticates the user and then accesses the API on their behalf
• The client needs an identity token and an access token
• This scenario combines OpenID Connect and OAuth

!
pdr.online

Clients obtain tokens by running an
OAuth or OIDC flow (aka grants)

pdr.online

OAUTH AND OIDC FLOWS

Implicit flow

Resource Owner Password Credentials flow

Authorization Code flow

Hybrid flow

Client Credentials flow

Device flow

Client-Initiated Backchannel Authentication flow (CIBA)

pdr.online

OAUTH AND OIDC FLOWS

Implicit flow

Resource Owner Password Credentials flow

Authorization Code flow

Hybrid flow

Client Credentials flow

Device flow

Client-Initiated Backchannel Authentication flow (CIBA)

Deprecated

Deprecated

No longer used

pdr.online

OAUTH AND OIDC FLOWS

Implicit flow

Resource Owner Password Credentials flow

Authorization Code flow

Hybrid flow

Client Credentials flow

Device flow

Client-Initiated Backchannel Authentication flow (CIBA)

Commonly used

Commonly used

pdr.online

THE AUTHORIZATION CODE FLOW

1 Request that triggers the initialization of the flow

2 Initialize the flow with the STS by redirecting the browser

3 Request to the STS to initialize the flow

4 Who are you? Please authenticate to me!

5 I am Philippe with password FluffyDog17!

6 Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

7 Follow redirect to the application's callback endpoint

8A server-to-server request to exchange
the authorization code from step 7

9 Relevant tokens for this
particular use case

10 Handle tokens according
to the use case at hand

THE AUTHORIZATION CODE FLOW

!
pdr.online

The Authorization Code flow supports both
OAuth and OIDC scenarios

1 I want to authenticate (click the login button)

2 Initialize the flow with the STS by redirecting the browser

3 Request to the STS to initialize the flow

4 Who are you? Please authenticate to me!

5 I am Philippe with password FluffyDog17!

6 Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

7 Follow redirect to the application's callback endpoint

8A server-to-server request to exchange
the authorization code from step 7

9 The identity token representing
the authenticated user

10 Use the identity token to
authenticate the user

THE AUTHORIZATION CODE FLOW FOR OIDC

pdr.online

pdr.online

The authorization request (a redirect to the STS)

1
2
3
4
5
6
7

https://sts.restograde.com/authorize
?response_type=code
&scope=openid profile email
&client_id=FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42
&redirect_uri=https://restograde.com/callback
&code_challenge=29K8tipblinCeP … HZ1PqLVxd9s
&code_challenge_method=S256

Indicates the authorization code flow
We want an ID token with email/profile info

Where the STS should send the code

2 3

The client requesting authentication

Flow security feature (PKCE)

pdr.online

The redirect back to the client application

1
2

https://restograde.com/callback
?code=ySVyktqNkEKJyyIjOKCVwCurNlGoRDcaLYEbW2j5WxZY The temporary authorization code

6 7

pdr.online

The request to exchange the authorization code

1
2
3
4
5
7
8
9

POST /oauth/token

grant_type=authorization_code
&client_id=FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42
&client_secret=6ODRv0g…OVOSWI
&redirect_uri=https://restograde.com/callback
&code=ySVyktqNkEKJyyIjOKCVwCurNlGoRDcaLYEbW2j5WxZY
&code_verifier=DOHpp1yiK0iElVij … K8HBZBqr75fKPps

8

Indicates the code exchange request
The client exchanging the code

The code received in step 7
The redirect URI used before
The client needs to authenticate to the STS

Flow security feature (PKCE)

pdr.online

The response from the Security Token Service

1
2
3

{
"id_token": "eyJhbGciO...du6TY9w",

}

9

The identity token representing the authenticated user

The identity token contains a sub claim with the
user's unique identifier. The application can use
this claim to lookup the user in its database and

establish and authenticated session

pdr.online

The Authorization Code flow and OIDC

pdr.online

THE AUTHORIZATION CODE FLOW FOR OIDC

• The openid scope makes the Authorization Code flow an OIDC flow
• In an OIDC flow, the STS provides the client with an identity token at the end of the flow
• Additional scopes (e.g., email, profile) allow the client to request more user data

• The identity token provides information about the user's authentication
• The mandatory sub claim contains the user's unique identifier at the STS
• User-specific claims provide additional information about the user's identity
• Additional claims can inform the client of authentication time, method, strength, …

• The core OIDC specification supports two additional flows
• The Implicit flow and Hybrid flow include the identity token directly in the callback
• These flows avoid the authorization code exchange, but are significantly harder to secure

!
pdr.online

The Authorization Code flow is the
current best practice to implement OIDC

1 I want you to access an API on my behalf

2 Initialize the flow with the STS by
redirecting the browser

3 Request to the STS to initialize the flow

4 Who are you? Please authenticate to me!

5 I am Philippe with password FluffyDog17!

6 Good. Now follow this redirect to send the
authorization code to the application

7 Follow redirect to the callback endpoint

8A server-to-server request to exchange
the authorization code from step 7

9 The access token representing
the authority to access the API

10 Access API with
access token

THE AUTHORIZATION CODE FLOW FOR OAUTH

pdr.online

pdr.online

The authorization request (a redirect to the STS)

1
2
3
4
5
6
7

https://sts.restograde.com/authorize
?response_type=code
&scope=reviews
&client_id=AB983CEYgx4mdUg3NKNKHjwfNAL5Fb42
&redirect_uri=https://virtualfoodie.com/callback
&code_challenge=29K8tipblinCeP … HZ1PqLVxd9s
&code_challenge_method=S256

Indicates the authorization code flow
We want a token with reviews access

Where the STS should send the code

2 3

The client requesting the token

Flow security feature (PKCE)

pdr.online

The response from the Security Token Service

1
2
3
4
5
6

{
"access_token": "eyJhbGciO...du6TY9w",
"expires_in": 3600,
"scope": "reviews",
"token_type": "Bearer"

}

9

The access token intended for accessing APIs
The lifetime of the access token (seconds)

The type of token
The scopes associated with the token

pdr.online

THE AUTHORIZATION CODE FLOW

• The Authorization Code flow supports both OAuth and OIDC scenarios
• The openid scope augments the OAuth Authorization Code flow with OIDC features

• The client application is known as a confidential client
• Confidential clients run in a restricted environment (e.g., a server environment)
• Confidential clients have access to a secret, allowing them to authenticate to the STS

• The authorization code is protected against abuse
• A confidential client needs to authenticate to exchange an authorization code
• Authorization codes should be short-lived and should only be valid for one-time use

pdr.online

SECURING THE FLOW WITH PKCE

!
pdr.online

The Authorization Code flow relies on the
insecure front channel to relay the code

1 Initialize the flow with the STS

2 Initialize the flow

3 Redirect with authorization code

4 Follow redirect with authorization code

7A server-to-server request to
exchange the authorization code

8 Relevant tokens associated
with the victim user

10 Associate tokens with
the attacker's account

AN AUTHORIZATION CODE INJECTION ATTACK

5 Steal the authorization code

6
Send request to
the callback with
 the stolen code

!
pdr.online

Proof Key for Code Exchange (PKCE)
helps protect the integrity of
the Authorization Code flow

1 Request that triggers the initialization of the flow

2 Initialize the flow with the STS by redirecting the browser

3 Request to the STS to initialize the flow

4 Who are you? Please authenticate to me!

5 I am Philippe with password FluffyDog17!

6 Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

7 Follow redirect to the application's callback endpoint

8A server-to-server request to exchange
the authorization code from step 7

9 Relevant tokens for this
particular use case

10 Handle tokens according
to the use case at hand

THE CONCEPT OF PKCE

The goal of PKCE is to ensure that the client that exchanges the code
in step 8 is the same client instance that initializes the flow in step 2

1 Request that triggers the initialization of the flow

4 Initialize the flow and include the code challenge

5 Request to the STS to initialize the flow

6 Who are you? Please authenticate to me!

7 I am Philippe with password FluffyDog17!

9 Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

10 Follow redirect to the application's callback endpoint

11Exchange the authorization code from step 10
and include the code verifier

13 Relevant tokens for this
particular use case

14 Handle tokens according
to the use case at hand

THE AUTHORIZATION CODE FLOW WITH PKCE

2Generate a random value (code verifier) and
associate it with the user's session (e.g., keep in a cookie)

8
Store the code challenge
along with the
authorization code

3
Calculate the SHA256 hash
of the code verifier
(code challenge)

12

Calculate the SHA256
hash of the code verifier
and compare to the
stored code challenge

pdr.online

pdr.online

The authorization request (a redirect to the STS)

1
2
3
4
5
6
7

https://sts.restograde.com/authorize
?response_type=code
&scope=openid profile email
&client_id=FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42
&redirect_uri=https://restograde.com/callback
&code_challenge=29K8tipblinCeP … HZ1PqLVxd9s
&code_challenge_method=S256

The code challenge (hash of code verifier)
The hash function used (for upgradeability)

2 3

pdr.online

The request to exchange the authorization code

1
2
3
4
5
7
8
9

POST /oauth/token

grant_type=authorization_code
&client_id=FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42
&client_secret=6ODRv0g…OVOSWI
&redirect_uri=https://restograde.com/callback
&code=ySVyktqNkEKJyyIjOKCVwCurNlGoRDcaLYEbW2j5WxZY
&code_verifier=DOHpp1yiK0iElVij … K8HBZBqr75fKPps

8

The code verifier from step 2

pdr.online

PROOF KEY FOR CODE EXCHANGE (PKCE)

• PKCE consists of a code verifier and a code challenge
• The code verifier is a cryptographically secure random string

• Between 43 and 128 characters of this character set: [A-Z] [a-z] [0-9] - . _ ~
• The code challenge is a base64 urlencoded SHA256 hash of the code verifier

• The hash function uniquely connects the code challenge to the code verifier
• The code verifier cannot be derived from the code challenge

• PKCE ensures that the same client intializes and finalizes the flow
• PKCE was originally intended to secure flows of public clients (no client authentication)
• Today, PKCE is a recommended best practice to guarantee flow integrity

• PKCE replaces the OAuth state parameter or OIDC nonce for security

pdr.online

PKCE in action

!
pdr.online

PKCE has become a security best practice
for all Authorization Code flows

pdr.online

MODERN LIBRARIES HANDLE ALL OF THE HEAVY LIFTING

https://www.baeldung.com/spring-security-pkce-secret-clients
https://medium.com/passportjs/pkce-support-for-oauth-2-0-e3a77013b278

https://www.scottbrady91.com/openid-connect/aspnet-core-using-proof-key-for-code-exchange-pkce#pkce-3

pdr.online

Understanding OAuth and OpenID Connect

pdr.online

LONG-TERM ACCESS WITH REFRESH TOKENS

pdr.online

1
Request new access token

with refresh token
and client authentication

2 Access token

3 Request with
new access token

4 Response

THE REFRESH TOKEN FLOW

pdr.online

1
Request new access token

with refresh token
and client authentication

2 Access token

3 Request with
new access token

4 Response

THE REFRESH TOKEN FLOW

The client application decides
when to use a refresh token to

get new access tokens

One option is to use the expires_in parameter in the token
response to figure out when the access token expires.

Another option is to monitor error responses from the API
when an expired token is rejected.

pdr.online

1
Request new access token

with refresh token
and client authentication

2 Access token

3 Request with
new access token

4 Response

THE REFRESH TOKEN FLOW

The client application decides
when to use a refresh token to

get new access tokens

If the client only needs infrequent one-shot access to the
API, it can consider not storing access tokens and running
a refresh token flow each time it needs an access token

pdr.online

Using refresh tokens

?
pdr.online

How does the client store a refresh token?

https://buffer.com/resources/buffer-has-been-hacked-here-is-whats-going-on/

pdr.online

HANDLING REFRESH TOKENS AT THE CLIENT

• The refresh token should be considered as sensitive as user credentials
• This is somewhat nuanced since using the refresh token requires client authentication
• When an attacker gains access to both, the users are in major trouble

• A minimum security requirement is guaranteeing confidential storage
• This approach fails if an attacker gains access to the encrypted data and the keys

• Consider moving refresh tokens to an isolated service in your architecture
• The main application can request a new access token from this service
• Only the service has access to the encrypted refresh tokens and associated keys
• This compartmentalization reduces the impact of application-level compromises

?
pdr.online

How does the client get a refresh token?

1 Request that triggers the initialization of the flow

4 Initialize the flow and include the code challenge

5 Request to the STS to initialize the flow

6 Who are you? Please authenticate to me!

7 I am Philippe with password FluffyDog17!

9 Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

10 Follow redirect to the application's callback endpoint

11Exchange the authorization code from step 10
and include the code verifier

13 Relevant tokens for this
particular use case, including a
refresh token

14 Handle tokens according
to the use case at hand

GETTING A REFRESH TOKEN FROM THE STS

2Generate a random value (code verifier) and
associate it with the user's session (e.g., keep in a cookie)

8
Store the code challenge
along with the
authorization code

3
Calculate the SHA256 hash
of the code verifier
(code challenge)

12

Calculate the SHA256
hash of the code verifier
and compare to the
stored code challenge

Some STS configurations
automatically issue a refresh

token to certain clients

Sometimes, the client is expected
to request the offline_access

scope when initializing the flow

?
pdr.online

What is the lifetime of the refresh token?

pdr.online

REFRESH TOKEN LIFETIMES

• The exact refresh token lifetime is at the discretion of the STS
• Refresh token lifetimes in real-world scenarios can be hours, months, or eternity
• The STS can change its lifetime policy at will, or make it dependent on the type of client

• Refresh tokens can also be revoked at the STS
• Clients can revoke refresh tokens when they no longer need them
• Users can often revoke refresh tokens to revoke a client's authority to act on their behalf

• When a refresh token is no longer valid, there is no path to recovery
• The only way for the client to regain access is by running a new Authorization Code flow
• For backend client applications, this often includes explicitly requesting user involvement

pdr.online

SESSION RE-USE AND SINGLE SIGN-ON

1 Request that triggers the initialization of the flow

2 Initialize the flow with the STS by redirecting the browser

3 Request to the STS to initialize the flow

4 Who are you? Please authenticate to me!

5 I am Philippe with password FluffyDog17!

6 Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

7 Follow redirect to the application's callback endpoint

8A server-to-server request to exchange
the authorization code from step 7

9 Relevant tokens for this
particular use case

10 Handle tokens according
to the use case at hand

THE AUTHORIZATION CODE FLOW

The STS uses cookies to keep track of the authenticated
user. Every subsequent request from the browser to the

STS will carry this cookie, enabling session re-use and SSO.

1 Request that triggers the initialization of the flow

2 Initialize the flow with the STS by redirecting the browser

3 Request to the STS to initialize the flow

4 Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

5 Follow redirect to the application's callback endpoint

6A server-to-server request to exchange
the authorization code from step 7

7 Relevant tokens for this
particular use case

8 Handle tokens according
to the use case at hand

RUNNING A FLOW WITH AN AUTHENTICATED SESSION

1 Request that triggers the initialization of the flow

2 Initialize the flow with the STS by redirecting the browser

3 Request to the STS to initialize the flow

4 Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

5 Follow redirect to the application's callback endpoint

6A server-to-server request to exchange
the authorization code from step 7

7 Relevant tokens for this
particular use case

8 Handle tokens according
to the use case at hand

RE-USING AN AUTHENTICATED SESSION FOR SINGLE SIGN-ON

pdr.online

USER SESSIONS WITH THE STS

• Managing the session of the user is the responsibility of the STS
• The STS has full control over how the session is managed and set
• The STS decides how long a user's session should be valid
• The STS can use inactivity timeouts to terminate sessions when desired

• As long as the user has an active session with the STS, there is no logout
• Whenever a client runs an Authorization Code flow, it will re-use the existing session
• Application architectures often have to decide if they want to implement Single Logout

• There is no explicit link between session lifetimes and token lifetimes
• For backend clients, use cases typically require long-term access using refresh tokens
• For other types of clients (web, mobile), refresh tokens may resemble sesion lifetimes
• Some highly-restrictive scenarios actively invalidate refresh tokens upon user logout

!
pdr.online

The prompt parameter allows the client to
control user interaction with the STS

1 Request that triggers the initialization of the flow

2 Initialize the flow and include the prompt parameter

3 Request to the STS to initialize the flow

4 Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

5 Follow redirect to the application's callback endpoint

6A server-to-server request to exchange
the authorization code from step 7

7 Relevant tokens for this
particular use case

8 Handle tokens according
to the use case at hand

USING THE PROMPT PARAMETER TO CONTROL USER INTERACTION

The client can set prompt=none
to indicate that the STS should

not prompt the user

The STS handles user interaction based on the
prompt parameter. If none is specified and the
user is not authenticated, an error is returned.

pdr.online

The prompt parameter in action

pdr.online

THE PROMPT PARAMETER

• The prompt parameter can be used to advise the STS on user interaction
• Part of the OIDC specification, but supported by most OAuth implementations
• The value is a space-delimited list with these defined values:

• The value none implies that user interaction is not allowed
• The value login implies that user authentication is required, even if a session exists
• The value consent implies that user consent is required, even if previously given
• The value select_account implies that the user has to explicitly select an account

• Running flows without user interaction is useful for background scenarios
• E.g., running a silent flow during bootstrapping to get tokens if the user is authenticated
• E.g., running a silent flow to renew access or refresh tokens without prompting the user

• Silent flows only work if the user's browser has an active session with the STS

pdr.online

OAUTH 2.0 AND OIDC FOR MOBILE APPS

3 Launch an embedded system browser to initialize the flow

4 Request to the STS to initialize the flow

5 Who are you? Please authenticate to me!

6 I am Philippe with password FluffyDog17!

8 Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

9 Redirect back to the app with the authorization code

10Exchange the authorization code from step 9
and include the code verifier, but no client authentication

12 Relevant tokens for this
particular use case

13 Handle tokens according
to the use case at hand

THE AUTHORIZATION CODE FLOW FOR MOBILE APPS

1Generate a random value (code verifier) and
store it on the user's device

7
Store the code challenge
along with the
authorization code

2
Calculate the SHA256 hash
of the code verifier
(code challenge)

11

Calculate the SHA256
hash of the code verifier
and compare to the
stored code challenge

!
pdr.online

Ongoing work in the OAuth working group
is looking into a native UX for mobile apps

pdr.online

OAUTH AND OIDC FOR MOBILE APPS

• Current best practice for mobile apps is to use the Authorization Code flow
• The mobile app is a public client, without the ability to authenticate to the STS
• PKCE ensures the security of the flow, since only the right client can exchange the code

• Mobile apps are supposed to run the flow in an embedded system browser
• Available as the SFSafariViewController (iOS) or Chrome Custom Tabs (Android)
• This browser is more secure than a webview because the application cannot inspect it
• The embedded system browser can re-use existing sessions, enabling SSO scenarios

• The mobile app can obtain a refresh token for long-term access
• Secure token storage options include the OS' keychain, or using OS-protected encryption
• The use of refresh token rotation helps avoid refresh token abuse

pdr.online

REFRESH TOKEN ROTATION

App obtains tokens
AT1 and RT1

AT1 expires

App refreshes tokens
Use RT1
Receive AT2 and RT2

AT2 expires

App refreshes tokens
Use RT2
Receive AT3 and RT3

AT3 expires

App refreshes tokens
Use RT3
Receive AT4 and RT4

pdr.online

App obtains tokens
AT1 and RT1

AT1 expires

App refreshes tokens
Use RT1
Receive AT2 and RT2

DETECTING REFRESH TOKEN ABUSE

AT2 expires

App refreshes tokens
Use RT2

Attacker steals RT2

Attacker uses RT2
Receive AT3 and RT3 Authorization server notices reuse of RT2

No tokens are issued
RT3 is revoked

pdr.online

Refresh token rotation in action

pdr.online

OAUTH 2.0 AND OIDC FOR WEB FRONTENDS

3 Redirect the browser to initialize the flow

4 Request to the STS to initialize the flow

5 Who are you? Please authenticate to me!

6 I am Philippe with password FluffyDog17!

8 Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

9 Relaunch the frontend with the authorization code

10Exchange the authorization code from step 9
and include the code verifier, but no client authentication

12 Relevant tokens for this
particular use case

13 Handle tokens according
to the use case at hand

THE AUTHORIZATION CODE FLOW FOR FRONTEND WEB APPS

1Generate a random value (code verifier) and
store it in the browser (E.g., localStorage)

7
Store the code challenge
along with the
authorization code

2
Calculate the SHA256 hash
of the code verifier
(code challenge)

11

Calculate the SHA256
hash of the code verifier
and compare to the
stored code challenge

3 Redirect the browser to initialize the flow

4 Request to the STS to initialize the flow

5 Who are you? Please authenticate to me!

6 I am Philippe with password FluffyDog17!

8 Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

9 Relaunch the frontend with the authorization code

10Exchange the authorization code from step 9
and include the code verifier, but no client authentication

12 Relevant tokens for this
particular use case

13 Handle tokens according
to the use case at hand

THE AUTHORIZATION CODE FLOW FOR FRONTEND WEB APPS

1Generate a random value (code verifier) and
store it in the browser (E.g., localStorage)

7
Store the code challenge
along with the
authorization code

2
Calculate the SHA256 hash
of the code verifier
(code challenge)

11

Calculate the SHA256
hash of the code verifier
and compare to the
stored code challenge

Frontend web applications often become the
victim of malicious JS code. When that

happens, the attacker can obtain access and
refresh tokens, giving them full access to APIs

on behalf of the user.

!
pdr.online

Frontend web applications should use the
Backend-For-Frontend pattern to secure
their OAuth implementations

pdr.online https://www.youtube.com/watch?v=OpFN6gmct8c

Photo by Pawel Czerwinski on Unsplash

15 minute break

pdr.online

THE CLIENT CREDENTIALS FLOW

2 The access token representing
the authority to access the API

3 Access API with
access token

USING OAUTH 2.0 FOR MACHINE-TO-MACHINE ACCESS

1Can I get an access token
to access the API

Use OAuth 2.0 to obtain an
access token, representing

the client's authority to
access the API directly.

Examples include
scheduled cron jobs,

GitHub actions,
configuration tools, …

pdr.online

The request to obtain an access token

1
2
3
4
5
6

POST /oauth/token
Host: sts.restograde.com

grant_type=client_credentials
&client_id=2JqcsqEpZfYNHxDazVMMkPT6oU6C7ZZS
&client_secret=xEJRXoe…Vd_BjB

1

Indicates the client credentials flow
The client exchanging the code
The client needs to authenticate to the STS

pdr.online

The response from the Security Token Service

1
2
3
4
5

{
"access_token": "eyJhbGciO…encDDLQ",
"token_type": "Bearer",
"expires_in": 3600,

}

2

The access token to access APIs

The expiration time of the access token

THE OAUTH 2.0 CLIENT CREDENTIALS FLOW

• The client is another application that needs to access APIs
• The client is accessing the API directly, on its own behalf
• There is no user involved in the Client Credentials flow

• This is an OAuth 2.0-only flow, not an OpenID Connect flow, so identity tokens are not used

• The Client Credentials flow fits within OAuth 2.0 as an authorization framework
• The access token issued by the STS represents the client's authority
• APIs already know how to handle access tokens, so little needs to change

• The Client Credentials flow only works with confidential clients
• Requesting access tokens requires authentication with a secret kept by the client
• Confidential clients need to run in a secure environment (server-side systems)

pdr.online

THE PURPOSE OF SCOPES

pdr.online

scope=openid email profile read:reviews

A mechanism provided by
OAuth 2.0 to define the scope

of an access token

The value is a space-delimited
string with scope values

OAuth 2.0 does not define any
scope values, but OIDC has a

set of reserved scopes

Applications can define
custom scopes

pdr.online https://developers.google.com/identity/protocols/oauth2/scopes

pdr.online https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/scopes-for-oauth-apps

PRACTICAL GUIDELINES FOR DEFINING SCOPES

• Unless you are Google, you probably do not need hundreds of scopes
• People sometimes run into length limits for the scope parameter, which is a bad smell
• If clients need access to every API in the system, then you don't need scopes

• Scopes enforce compartmentalization, but do not replace existing authorization systems

• Guidelines to define scopes
• Start by identifying logical groupings in the APIs

• E.g., reviews and restaurants
• Determine if different access levels are needed

• E.g., restaurants is used by a single client
• E.g., read:reviews is for third-party clients

• Isolate extremely sensitive permissions
• E.g., delete:reviews is only possible after consent

!
pdr.online

Scopes allow the user to delegate a subset
of their full authority to a client application

pdr.online

Using scopes

pdr.online

SCOPES AND THEIR LIMITATIONS

• Scopes were initially defined to reduce the authority given to a client
• Scopes are closely linked to user consent, which is relevant in third-party scenarios
• Statically defined scopes are mainly useful for static delegation scenarios

• Advanced use cases often use dynamic scopes that relate to business domains
• With a dynamic scope, clients can request the authority to access specific objects
• Dynamic scopes require a close coupling between the STS and authorization logic

• Rich Authorization Requests (RAR) further enhance the concept of scopes
• RAR is a recent addition to the OAuth landscape, aimed to support complex scenarios
• E.g., a client can request the authority to perform a wire transfer for a certain amount

pdr.online

ACCESS TOKENS AND ACCESS TOKEN TYPES

pdr.online

Can I access the API please?

Can you handle this for me please?

Help me out here,
is this client allowed to do that?

OAuth 2.x

OAuth 2.x

OAuth 2.x

pdr.online

1 Access API with
access token

The access token can be a self-contained
token or a reference token

The STS decides which type of token to
use, and how to format them. Clients
are explicitly forbidden to rely on the

format and contents of the access token.

Note that contraty to access
tokens, identity tokens are
intended to be consumed

by the client.

The API is expected to use
the access token to make
authorization decisions

pdr.online

1 Access API with
access token

A reference token

vSvhNDeQLqrzRbvA2eeYE2PthB1cBimS

3 The claims associated with the
access token

2Perform token introspection to
translate a token into claims

pdr.online

pdr.online

The token introspection response

1
2
3
4
5
6
7

{
"active": true,
"iss": "https://sts.restograde.com",
"sub": "2262430d-c9cb-484f-9770-805893ff9518",
"scope": "reviews:read",
…

}

3

pdr.online

TOKEN INTROSPECTION

• The fields returned are all marked as optional, except for active
• The active field indicates if a token is still valid or not
• The other fields are only present if a token is valid and provide context information

• Ultimately, the STS is in control over what is returned during introspection
• The returned information can include custom fields
• Depending on which API is asking, more or less information may be included

• The main benefit of reference tokens is the high degree of control by the STS
• Revoked tokens will be invalid the next time they are introspected
• The downside of reference tokens is the mandatory token introspection step

pdr.online

1 Access API with
access token

A self-contained access token

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsImtpZC
I6Ik5UVkJPVFUzTXpCQk9FVXdOemhCUTBWR01rUTBR
VVU1UVRZeFFVVXlPVU5FUVVVeE5qRXlNdyJ9.eyJpc
3MiOiJodHRwczovL3N0cy5yZXN0b2dyYWRlLmNvbS8
iLCJzdWIiOiJhdXRoMHw1ZWI5MTZjMjU4YmRiNTBiZ
jIwMzY2YzYiLCJhdWQiOlsiaHR0cHM6Ly9hcGkucmV
zdG9ncmFkZS5jb20iLCJodHRwczovL3Jlc3RvZ3JhZ
GUuZXUuYXV0aDAuY29tL3VzZXJpbmZvIl0sImlhdCI
6MTU4OTc3NTA3MiwiZXhwIjoxNTg5ODYxNDcyLCJhe
nAiOiJPTEtObjM4OVNVSW11ZkV4Z1JHMVJpbExTZ2R
ZeHdFcCIsInNjb3BlIjoib3BlbmlkIHByb2ZpbGUgZ
W1haWwgb2ZmbGluZV9hY2Nlc3MifQ.XzJOXtTXOGOS
bCFvp4yZGJzh7XhMmOmI2XxtjWdlODz_siI-u8h11e
lcr8LwX6-hL20QOW0eStzBzmm1FM_tS7MxuKkYx8Ql
TWOURPembVKZOhNi8kN-1j0pyc0uzve7Jib5vcxmkP
wqpcVDFACgP85_0NYe4zXHKxCA5_8VOn05cRCDSkNM
TFzGJCT9ipCcNXaVGdksojYGqQzezjpzzzwrtPEkiy
FLFtDPZAl0MleF3oFAOCBK0UKuNjJ_cSBbUsaIwfvK
0WH47AwFrRn_TxL4S1P3j3b1GgBm8tAqXysY84VZu0
rSg3zrZj1PnoqPD4mbOXds20xafCr9wR4WTQ

To validate a self-contained token, the API uses the
public key of the STS, which can be loaded from a
dedicated endpoint on the STS. Once loaded, the

public key can be reused for future token validations

Self-contained tokens are typically
formatted as JWTs and are signed by

the STS

The contents of the self-contained
token are similar claims as obtained

through token introspection.

pdr.online

VERIFYING SELF-CONTAINED ACCESS TOKENS

• The API is typically configured with a trusted STS
• The STS will provide access tokens, which will be used to make authorization decisions
• With the URL of the STS, the API can bootstrap its token verification mechanism
• The API must verify the integrity of a self-contained access token before using the data

• Access token verification is typically implemented in middleware
• Barebones JWT libraries can handle most of these details
• Many languages offer resource server libraries, which deal with access tokens specifically

• The introspection RFC also allows token introspection for self-contained tokens
• Introspecting JWTs can be used to detect revocation before the token expires

?
pdr.online

Which token type is right for you?

!
pdr.online

The trade-off is between security and
performance

pdr.online

REFERENCE TOKENS VS SELF-CONTAINED TOKENS

• Due to the perfomance impact, token introspection is often only used locally
• SaaS-based STS implementations often do not support reference tokens
• APIs can handle token introspection, but gateways often take this responsibility

• Reference tokens are easy to revoke before they expire
• Revoking self-contained tokens is possible, but requires propagating this info to all APIs
• Relying on fast revocation is typically handled automatically, not manually

• E.g., an anomaly-detection system that revokes tokens from suspicious requests

• Both reference tokens and self-contained access tokens have a limited lifetime
• When an access token expires, the client uses a refresh token to contact the STS
• Refresh tokens can also easily be revoked, preventing the issuing of a new access token
• Short access token lifetimes (e.g., 5 – 10 mins) improve revocation properties

pdr.online

MAKING AUTHORIZATION DECISIONS WITH ACCESS TOKENS

Verify JWT signature and check
exp, nbf, and iss claims

Check additional/optional API-specific claims (E.g., aud)

Check generic authorization (E.g., scope)

Make specific authorization decisions
(E.g., check the user, the client ID, a customer ID, ...)

The client provides the access token

Introspect the token with the STS
and check the active claim

At the end of this step, the access token is
transformed into a uniform set of claims

The audience is used by the Resource
Indicators spec & some STS implementations

Generic authorization checks often correspond
to function-level access control

The sub claim contains the user ID (if relevant),
but custom claims can contain all kinds of data

pdr.online

Implementing API authorization

pdr.online

AND THERE'S MORE …

pdr.online

AND THERE'S MORE, SO MUCH MORE …

pdr.online https://www.youtube.com/watch?v=OpFN6gmct8c

pdr.online

https://bit.ly/oauthcourse

pdr.online

CONCLUSION

pdr.online

OAuth 2.0 allows a client to access APIs (on behalf of a user)1

OpenID Connect allows a client to offload authentication2

User-facing apps use the Authorization Code flow with PKCE3

KEY TAKEAWAYS

Thank you!
Connect on LinkedIn

to stay in touch PhilippeDeRyck

https://bit.ly/oauthcourse

Want more?

Join me in November for an 8 in-depth sessions on
OAuth 2.x and OpenID Connect

