E

INTRODUCTION TO OAUTH 2.0
AND OPENID CONNECT

https://Pragmatic Web Security.com

Internet Engineering Task Force (IETF)
Request for Comments: 6749
Obsoletes: 5849

Category: Standards Track
ISSN: 2070-1721

D. Hardt, Egqg.
Microsoft
October 2012

Abstract

third—party application to obtain access on ijitg own behalf, This
L f i ' -0 protoco] described

NRI
J. Bradley
Ping Identity

B. de Medeiros
Google

Salesforce
November 8, 2014

OpeniD Connect Core 1.0 incorporating errata set 1

verify the identity of

ples Clients to
. ple identity layer on top of the OAuth 2.0 protocol. It ena o sic profile

entication performed by an Authorization Server, as well as to obtain
information about the End-User in an interoperable and REST-like manner.
entication built on top of OAutl

1D Connect functionality: auth | :
reog;;ir;m the End-User. It also describes the security and privacy €0

h 2.0 and the use of

This speciﬁcation defines the cof | <iderations for using

Claims to communicate informati
OpenlD Connect.

ificat .
be.'."."l\‘- .{reqUestS +A~ .catlon decn~—z:- Nrdnartv

Network Working Group A. Parecki \
Internet-Draft Okta

Intended status: Best Current Practice D. Waite

Expires: 8 September 2022 ping Identity
7 March 2022

oAuth 2.0 for Browser-Based AppS
draft—ietf—oauth—browser-based-apps-09

Abstract

This specification details the security considerations and best
practices that must be taken into account when developing browser-—
pased applications that use OAuth 2.0.

. e End- : P of the O
This doc Userin an e Auth 2.0
Ument descri N interoper; Y -V protocol, 1
ribes how able and - It enables ¢
ents to

an Authorizati
-NOrization
to REST-like m, Server, 3
anner, 7 as well as to
: obtain

verify the identity of

Manage segs;j
ssions :
for OpenID Con) basic profil,
nect, including wh ¢
en to Jog o
ut the

End-user.

"Trony *- .
.4, J(; ~\,W

Workgroup: OAuth Working Group D. Hardt

Internet-Draft: draft-ietf-oauth-v2-1-09 Hello
Published: 10 July 2023 A. Parecki
Intended Status: Standards Track Okta
Expires: 11 January 2024 T. Lodderstedt

yes.com

The OAuth 2.1 Authorization Framework

Abstract

The OAuth 2.1 authorization framework enables an application to
obtain limited access to a protected resource, either on behalf of a
resource owner by orchestrating an approval interaction between the
resource owner and an authorization service, or by allowing the
application to obtain access on its own behalf. This specification
replaces and obsoletes the OAuth 2.@ Authorization Framework
described in RFC 6749 and the Bearer Token Usage in RFC 6750.

OpenlID Connect

SECURITY
TOKEN
SERVICE

OAuth 2.0

l Authenticate the user for me?

Help me out here, l

? Can | access the API please? SR
is this client allowed to do that?

OAuth 2.0

o

CLIENT API

) (%

API API

¢

BACKEND

Can you handle this for me please?

I oA

OAuth 2.0 API

¢ pdr.online

¢ pdr.online

TERMINOLOGY

This session

User

API

Security Token Service (STS)

Client

OAuth 2.0

Resource Owner

Resource Server

Authorization Server

Client

OpenlD Connect

End-User

OpenlD Provider

Relying Party

| am Dr. Philippe De Ryck

@ Fragmatic Heh Securty Founder of Pragmatic Web Security

Security for developers

) 4 ExngeHs Google Developer Expert

AMBASSADOR Auth0 Ambassador

R o] G R A M

:= SecAppDev SecAppDev organizer

| help developers with security

@ Hands-on in-depth security training

@ Advanced online security courses

Security advisory services

https://pdr.online

GRAB A COPY OF THE SLIDES ...

https://pragmaticwebsecurity.com/talks

OLEHE

Ak e 4*3]

/in/PhilippeDeRyck iég:,""'ﬁ“-ﬁ?
E

(@) =5y dg
https://infosec.exchange/@PhilippeDeRyck

00O

@) pdr.online Website icons created by Uniconlabs - Flaticon

USE CASES AND FLOWS

@ pdr.online

OpenlID Connect

SECURITY
TOKEN
SERVICE

OAuth 2.x

l Authenticate the user for me?

Help me out here, l

? Can | access the API please? SR
is this client allowed to do that?

OAuth 2.x

o

CLIENT API

) (%

API API

¢

BACKEND

Can you handle this for me please?

I oA

OAuth 2.x API

¢ pdr.online

OpenlID Connect

SECURITY
TOKEN

l Authenticate the user for me? SERVICE

¢

BACKEND

(¥ pdr.online

5= slack okta
® |

Welcome to Pinterest

Welcome . Sign in to Okta
Email address
Log in to Restograde to continue to Restograde Email
Frontend.
. Password or
Email address
[Password o { | have a guest account]
Forgotten your password? Sign in with your email and password if you have a guest account.
Password ©
Log in Org Owners can also sign in here.
Forgot password? OR
_ 9 e
G Continue with Google . .
Integrating enterprise SSO
Don'Ehave. an accounte Sgn By continuing, you agree to Pinterest's 1 H 1
Yy Inuing, you I
Terms of Service and acknowledge that you've I n Sa a S a p p I I cat I o ns
read our Privacy Policy. Notice at collection.

Not on Pinterest yet? Sign up

Offloading a uthentication Are you a business? Get started here!
to a dedicated identity
provider

Implementing social login
(e.g., Google, Facebook)

¢ pdr.online

|:| OpenlID Connect in action

@ pdr.online

OVERVIEW OF USE CASES FOR OAUTH AND OIDC

* An application wants to authenticate users using an external identity provider
* E.g., Delegating login to an identity provider, social login (e.g., Google), or enterprise SSO
* The client that wants to authenticate the user needs an identity token
 This scenario only uses OpenID Connect

* An application wants to use an APl on behalf of the user
e E.g., Accessing the Restograde API to read or create reviews for the user
* The client needs an access token to make requests to the Restograde API
* This scenario only uses OAuth

@ pdr.online

OpenlID Connect

SECURITY
TOKEN
SERVICE

OAuth 2.x

l Authenticate the user for me?

Help me out here, l

? Can | access the API please? SR
is this client allowed to do that?

OAuth 2.x

o

CLIENT API

) (%

API API

¢

BACKEND

Can you handle this for me please?

I oA

OAuth 2.x API

¢ pdr.online

SECURITY
TOKEN
SERVICE

OAuth 2.x

Help me out here, l

? Can | access the API please? SR
is this client allowed to do that?

OAuth 2.x

o

CLIENT AP

¢

BACKEND

Can you handle this for me please? AP AP!

| o

OAuth 2.x API

(¥ pdr.online

|:| OAuth in action

@ pdr.online

OVERVIEW OF USE CASES FOR OAUTH AND OIDC

* An application wants to authenticate users using an external identity provider
* E.g., Delegating login to an identity provider, social login (e.g., Google), or enterprise SSO
* The client that wants to authenticate the user needs an identity token
* This scenario only uses OpenlID Connect

* An application wants to use an APl on behalf of the user
* E.g., Accessing the Restograde API to read or create reviews for the user
* The client needs an access token to make requests to the Restograde API
* This scenario only uses OAuth

* An application wants to authenticate users and access APIs on their behalf
* E.g., the Restograde mobile app authenticates the user and then accesses the APl on their behalf
* The client needs an identity token and an access token
* This scenario combines OpenID Connect and OAuth

@ pdr.online

Clients obtain tokens by running an

OAuth or OIDC flow (aka grants)

OAUTH AND OIDC FLOWS

Implicit flow
Resource Owner Password Credentials flow
Authorization Code flow
Hybrid flow
Client Credentials flow
Device flow

Client-Initiated Backchannel Authentication flow (CIBA)

@ pdr.online

OAUTH AND OIDC FLOWS

Implicit flow Deprecated
Resource Owner Password Credentials flow Deprecated

Authorization Code flow

Client Credentials flow
Device flow

Client-Initiated Backchannel Authentication flow (CIBA)

¢ pdr.online

OAUTH AND OIDC FLOWS

Implicit flow

Resource Owner Password Credentials flow

Authorization Code flow Commonly used
Hybrid flow

Client Credentials flow Commonly used
Device flow

Client-Initiated Backchannel Authentication flow (CIBA)

¢ pdr.online

THE AUTHORIZATION CODE FLOW

@ pdr.online

USER

THE AUTHORIZATION CODE FLOW

e I am Philippe with password FluffyDog17!
e Request to the STS to initialize the flow

< SECURITY

a Who are you? Please authenticate to me! TOKEN

e Good. Now follow this redirect back to the application, 2ieE

so it can extract the authorization code from the URL
A server-to-server request to exchange e Relevant tokens for this
the authorization code from step 7 particular use case
@ Handle tokens according
to the use case at hand

0 Follow redirect to the application's callback endpoint

0 Request that triggers the initialization of the flow S
<€

G Initialize the flow with the STS by redirecting the browser BACKEND

The Authorization Code flow supports both

OAuth and OIDC scenarios

THE AUTHORIZATION CODE FLOW FOR OIDC

e I am Philippe with password FluffyDog17!
e Request to the STS to initialize the flow

SECURITY
TOKEN
SERVICE

° Who are you? Please authenticate to me!

e Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

E A server-to-server request to exchange e e The identity token representing

the authorization code from step 7 the authenticated user
USER

@ Use the identity token to
authenticate the user

0 Follow redirect to the application's callback endpoint
o | want to authenticate (click the login button)

>

<€

G Initialize the flow with the STS by redirecting the browser BACKEND

THE AUTHORIZATION CODE FLOW FOR OIDC

\ e | am Philippe with password FluffyDog17!
6 Request to the STS to initialize the flow

SECURITY
TOKEN
SERVICE

o Who are you? Please authenticate to me!

6 Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

E A server-to-server request to exchange e 0 The identity token representing

the authorization code from step 7 the authenticated user
USER

@ Use the identity token to
authenticate the user

G Follow redirect to the application's callback endpoint
0 | want to authenticate (click the login button)

<€

e Initialize the flow with the STS by redirecting the browser BACKEND

Q 0 The authorization request (a redirect to the STS)

1 https://sts.restograde.com/authorize

2 ?response_type=code e Indicates the authorization code flow

3 &scope=openid profile email e We want an ID token with email/profile info
4 &client_1d=FN983CEYgx4mdUg3NKNKHjwfNALS5Fb42 The client requesting authentication

5 &redirect_uri=https://restograde.com/callback e——— Where the STS should send the code

§) &code_challenge=29K8tipblinCeP .. HZ1PgLVxd9s .

7 &code_challenge_method=5256 ’ | Flow security feature (PKCE)

THE AUTHORIZATION CODE FLOW FOR OIDC

o | am Philippe with password FluffyDog17! Q

e Request to the STS to initialize the flow - Oﬁ
. ECURITY

o Who are you? Please authenticate to me! ST%ll"(EN

o Good. Now follow this redirect back to the application, sddnins

so it can extract the authorization code from the URL A
E A server-to-server request to exchange e o The identity token representing
the authorization code from step 7 the authenticated user

USER

¥ @ Use the identity token to
authenticate the user

e Follow redirect to the application's callback endpoint

0 | want to authenticate (click the login button) - ‘
- Cd

X 0 Initialize the flow with the STS by redirecting the browser BACKEND

<

¢ pdr.online —

e 0 The redirect back to the client application

1 https://restograde.com/callback
2 ?code=ySVyktgNkEKIyyIjOKCVwCurN1GoRDcaLYEbW2j5WxZY e——— The temporary authorization code

THE AUTHORIZATION CODE FLOW FOR OIDC

e | am Philippe with password FluffyDog17! Q

e Request to the STS to initialize the flow - Oﬁ

o Who are you? Please authenticate to me! SI_-i_((:)LIl(l;I'IY

o Good. Now follow this redirect back to the application, SERMICE
so it can extract the authorization code from the URL A

E A server-to-server request to exchange e o The identity token representing

the authorization code from step 7 the authenticated user
USER

, @ Use the identity token to

A authenticate the user

o Follow redirect to the application's callback endpoint
0 | want to authenticate (click the login button) -

e Initialize the flow with the STS by redirecting the browser BACKEND

¢ pdr.online —

© 7he request to exchange the authorization code

&code=ySVyktgNKkEKJyyIjOKCVwCurN1GoRDcaLYEbW2j5WXxZY e———— The code received in step 7
&code_verifier=DOHpplyiK@iE1lVij .. K8HBZBqr75fKPps e———— Flow security feature (PKCE)

1 POST /oauth/token

2

3 grant_type=authorization_code e Indicates the code exchange request

4 &client_id=FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42 The client exchanging the code

5 &client_secret=60DRv0g..0VOSWI e The client needs to authenticate to the STS
/7 &redirect_uri=https://restograde.com/callback e——— The redirect URI used before

8

9

THE AUTHORIZATION CODE FLOW FOR OIDC

e | am Philippe with password FluffyDog17! Q
o Request to the STS to initialize the flow - Oﬁ
o Who are you? Please authenticate to me! sﬁ-%llj(';gv
° Good. Now follow this redirect back to the application, RERMICE
so it can extract the authorization code from the URL A
E A server-to-server request to exchange 0 o The identity token representing

the authorization code from step 7 the authenticated user

USER

¥ @ Use the identity token to
authenticate the user

o Follow redirect to the application's callback endpoint
o | want to authenticate (click the login button) R

e Initialize the flow with the STS by redirecting the browser BACKEND

AN

¢ pdr.online —

e The response from the Security Token Service

1o
2 "id_token": "eyJhbGciO...dubTY9w", e The identity token representing the authenticated user
3} ?

The identity token contains a sub claim with the

user's unique identifier. The application can use

this claim to lookup the user in its database and
establish and authenticated session

THE AUTHORIZATION CODE FLOW FOR OIDC

e | am Philippe with password FluffyDog17! ﬁ

e Request to the STS to initialize the flow - OQ

° Who are you? Please authenticate to me! SI_?_%IIJ(IEI'":'Y

o Good. Now follow this redirect back to the application, Sl
so it can extract the authorization code from the URL A

E A server-to-server request to exchange e o The identity token representing

the authorization code from step 7 the authenticated user
USER

, @ Use the identity token to

A authenticate the user

e Follow redirect to the application's callback endpoint
a | want to authenticate (click the login button) -

X o Initialize the flow with the STS by redirecting the browser BACKEND

¢ pdr.online —

D The Authorization Code flow and OIDC

THE AUTHORIZATION CODE FLOW FOR OIDC

* The openid scope makes the Authorization Code flow an OIDC flow
* In an OIDC flow, the STS provides the client with an identity token at the end of the flow
» Additional scopes (e.g., email, profile) allow the client to request more user data

* The identity token provides information about the user's authentication
* The mandatory sub claim contains the user's unique identifier at the STS
* User-specific claims provide additional information about the user's identity
e Additional claims can inform the client of authentication time, method, strength, ...

* The core OIDC specification supports two additional flows
* The Implicit flow and Hybrid flow include the identity token directly in the callback
* These flows avoid the authorization code exchange, but are significantly harder to secure

@ pdr.online

The Authorization Code flow is the

current best practice to implement OIDC

@ pdr.online

USER

THE AUTHORIZATION CODE FLOW FOR OAUTH

e | am Philippe with password FluffyDog17!
e Request to the STS to initialize the flow

< SECURITY
e Who are you? Please authenticate to me! TOKEN
e Good. Now follow this redirect to send the H2iisls
authorization code to the application
A server-to-server request to exchange e 0 The access token representing
the authorization code from step 7 the authority to access the API
Follow redir h liback en in :
a ollow redirect to the callback endpoint Access APl with ﬁ
o | want you to access an APl on my behalf access token
sWllax'e:
<€

e Initialize the flow with the STS by BACKEND API
redirecting the browser

USER

THE AUTHORIZATION CODE FLOW FOR OAUTH

e | am Philippe with password FluffyDog17'!
e Request to the STS to initialize the flow

<€
o Who are you? Please authenticate to me! SI_:;%[&I:I'IY
e Good. Now follow this redirect to send the il
authorization code to the application
A server-to-server request to exchange 0 e The access token representing
the authorization code from step 7 the authority to access the API
0 Follow redirect to the callback endpoint Access APl with Q
o | want you to access an APl on my behalf access token g
< o

e Initialize the flow with the STS by BACKEND API
redirecting the browser

Q 0 The authorization request (a redirect to the STS)

https://sts.restograde.com/authorize

?response_type=code e

&scope=reviews e

&redirect_uri=https://virtualfoodie.com/callback e——— Where the STS should send the code

1

2

3

4 &client_id=AB983CEYgx4mdUg3NKNKHjwfNAL5Fb42 e
5

§) &code_challenge=29K8tipblinCeP ..

7

&code_challenge_method=5256

HZ1PqLVxd9s _

¢ pdr.online

THE AUTHORIZATION CODE FLOW FOR OAUTH

e | am Philippe with password FluffyDog17!
o Request to the STS to initialize the flow

USER

r g

o Who are you? Please authenticate to me!

° Good. Now follow this redirect to send the
authorization code to the application

A server-to-server request to exchange
the authorization code from step 7

o Follow redirect to the callback endpoint
0 | want you to access an APl on my behalf -

r g

&
<

e Initialize the flow with the STS by
redirecting the browser

3
2,

TOKEN
SERVICE

A

o e The access token representing
the authority to access the API

‘@

| Flow security feature (PKCE)

Access APl with
access token

BACKEND

Indicates the authorization code flow
We want a token with reviews access
The client requesting the token

(%

API

0 The response from the Security Token Service

1 {

THE AUTHORIZATION CODE FLOW FOR OAUTH

The access token intended for accessing APIs

The lifetime of the access token (seconds)
The scopes associated with the token

The type of token

o | am Philippe with password FluffyDog17!
e Request to the STS to initialize the flow

rq

o Who are you? Please authenticate to me!

o Good. Now follow this redirect to send the
authorization code to the application

A server-to-server request to exchange
the authorization code from step 7

o Follow redirect to the callback endpoint
o | want you to access an APl on my behalf

rd

2 "access_token": "eyJhbGciO...dubTYOw", e
3 "expires_in": 3600, e
4 "scope': "reviews", e
5 "token_type": "Bearer' e
6}
)
(¥ pdr.online —

0 Initialize the flow with the STS by
redirecting the browser

3
2,

TOKEN
SERVICE

N

o o The access token representing
the authority to access the API

Access APl with
access token

‘@

BACKEND

(%

API

THE AUTHORIZATION CODE FLOW

* The Authorization Code flow supports both OAuth and OIDC scenarios
* The openid scope augments the OAuth Authorization Code flow with OIDC features

* The client application is known as a confidential client
» Confidential clients run in a restricted environment (e.g., a server environment)
e Confidential clients have access to a secret, allowing them to authenticate to the STS

* The authorization code is protected against abuse

* A confidential client needs to authenticate to exchange an authorization code
e Authorization codes should be short-lived and should only be valid for one-time use

@ pdr.online

SECURING THE FLow WITH PKCE

@ pdr.online

The Authorization Code flow relies on the

insecure front channel to relay the code

@ pdr.online

USER

AN AUTHORIZATION CODE INJECTION ATTACK

6 Initialize the flow

<€

<€

e Redirect with authorization code

SECURITY
TOKEN
SERVICE

A server-to-server request to Relevant tokens associated
exchange the authorization code with the victim user

Associate tokens with
the attacker's account

c Initialize the flow with the STS Send request to

the callback with

>

the stolen code
e Follow redirect with authorization code BACKEND

e Steal the authorization code

=2

ATTACKER

Proof Key for Code Exchange (PKCE)

helps protect the integrity of
the Authorization Code flow

USER

THE CONCEPT OF PKCE

e I am Philippe with password FluffyDog17!
e Request to the STS to initialize the flow

< SECURITY
0 Who are you? Please authenticate to me! TOKEN
e Good. Now follow this redirect back to the application, B
so it can extract the authorization code from the URL
A server-to-server request to exchange e Relevant tokens for this
the authorization code from step 7 particular use case
®
The goal of PKCE is to ensure that the client that exchanges the code
: in step 8 is the same client instance that initializes the flow in step 2
0 Follow redirect to the ap|
a Request that triggers the initialization of the flow
>
<€

Q Initialize the flow with the STS by redirecting the browser BACKEND

THE AUTHORIZATION CODE FLOW WITH PKCE

Store the code challenge

e along with the
authorization code

e I am Philippe with password FluffyDog17!
e Request to the STS to initialize the flow

Calculate the SHA256

<€

. SECURITY
e Who are you? Please authenticate to me! TOKEN hash of the code verifier
SERVICE and compare to the

e Good. Now follow this redirect back to the application,

so it can extract the authorization code from the URL stored code challenge

E Exchange the authorization code from step 10 @ Relevant tokens for this

and include the code verifier particular use case
USER

@ Handle tokens according
to the use case at hand

@ Follow redirect to the application's callback endpoint
a Request that triggers the initialization of the flow

<€

e Initialize the flow and include the code challenge BACKEND Calculate the SHA256 hash
Y, e of the code verifier

Generate a random value (code verifier) and e (code challenge)
associate it with the user's session (e.g., keep in a cookie) 9

THE AUTHORIZATION CoDE FLow WITH PKCE

Store the code challenge

N L ,
o | am Philippe with password FluffyDog17! 0 along with the
e Request to the STS to initialize the flow authorization code
Z SECURITY Calculate the SHA256
e Who are you? Please authenticate to me! TOKEN hash of the code verifier
e Good. Now follow this redirect back to the application, H2idine and compare to the
so it can extract the authorization code from the URL stored code challenge
E Exchange the authorization code from step 10 @ Relevant tokens for this
and include the code verifier particular use case
USER
@ Handle tokens according
to the use case at hand
@ Follow redirect to the application's callback endpoint
0 Request that triggers the initialization of the flow
<€
0 Initialize the flow and include the code challenge BACKEND Calculate the SHA256 hash
) e of the code verifier

Generate a random value (code verifier) and 0 (code challenge)

associate it with the user's session (e.g., keep in a cookie)

Q Q The authorization request (a redirect to the STS)

1 https://sts.restograde.com/authorize
2 ?response_type=code

3 &scope=openid profile email

4 &client_id=FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42
5 &redirect_uri=https://restograde.com/callback

§) &code_challenge=29K8tipblinCeP .. HZ1PgLVxd9se The code challenge (hash of code verifier)
7 &code_challenge_method=S256 e The hash function used (for upgradeability)

THE AUTHORIZATION CODE FLOW WITH PKCE

(\ Store the code challenge
o | am Philippe with password FluffyDog17! a e along with the E
o Request to the STS to initialize the flow B OQ authorization code
SECURITY Calculate the SHA256
e Who are you? Please authenticate to me! TOKEN hash of the code verifier
SERVICE and compare to the

o Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL N

stored code challenge

E Exchange the authorization code from step 10 @ Relevant tokens for this
and include the code verifier particular use case
USER
¥ @ Handle tokens according
to the use case at hand
@ Follow redirect to the application's callback endpoint
o Request that triggers the initialization of the flow R
o Initialize the flow and include the code challenge BACKEND Calculate the SHA256 hash
. Y e of the code verifier
@) pd r.online \—/ Generate a random value (code verifier) and o (code challenge)

associate it with the user's session (e.g., keep in a cookie)

© 7he request to exchange the authorization code

POST /oauth/token

grant_type=authorization_code
&client_id=FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42
&client_secret=60DRv0Oq..0VOSWI
&redirect_uri=https://restograde.com/callback
&code=ySVyktgNkEKJyyIjOKCVwCurN1GoRDcaLYEbW2j5WxZY
&code_verifier=DOHpplyiK@iE1lVij .. K8HBZBqr75fKPps

O oo JuUul B~ WN =

The code verifier from step 2

THE AUTHORIZATION CoDE FLOW WITH PKCE

Store the code challenge
(\ e . '
° | am Philippe with password FluffyDog17! Q along with the
e Request to the STS to initialize the flow o G authorization code
<< SECURITY Calculate the SHA256
° Who are you? Please authenticate to me! TOKEN hash of the code verifier
SERVICE and compare to the

o Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL A

stored code challenge

E Exchange the authorization code from step 10 @ Relevant tokens for this

and include the code verifier particular use case

USER
Handle tokens according
L 4 @ to the use case at hand
@ Follow redirect to the application's callback endpoint
o Request that triggers the initialization of the flow -
B o Initialize the flow and include the code challenge BACKEND Calculate the SHA256 hash
. . o of the code verifier
@) pd r.online \—/ Generate a random value (code verifier) and e (code challenge)

associate it with the user's session (e.g., keep in a cookie)

PROOF KEY FOR CODE EXCHANGE (PKCE)

* PKCE consists of a code verifier and a code challenge

* The code verifier is a cryptographically secure random string
* Between 43 and 128 characters of this character set: [A-Z] [a-z] [0-9] -. _~

* The code challenge is a base64 urlencoded SHA256 hash of the code verifier
* The hash function uniquely connects the code challenge to the code verifier
* The code verifier cannot be derived from the code challenge

* PKCE ensures that the same client intializes and finalizes the flow
e PKCE was originally intended to secure flows of public clients (no client authentication)
* Today, PKCE is a recommended best practice to guarantee flow integrity

* PKCE replaces the OAuth state parameter or OIDC nonce for security

¢ pdr.online

D PKCE in action

@ pdr.online

PKCE has become a security best practice

for all Authorization Code flows

@ pdr.online

MODERN LIBRARIES HANDLE ALL OF THE HEAVY LIFTING

4. Spring Security Support for PKCE

As of Spring Security 5.7, PKCE is fully supported for both servlet and reactive flavored web
applications. However, this feature is nhot enabled by
extension yet. Spring Boot applications must use ver

standard dependency management. This ensures th PKCE SU pport for OAUth 2.0

along with its transitive dependencies.

Pt Out of the box PKCE in ASP.NET Core 3

ec

With ASP.NET Core 3, it's a simple case of setting a property on OpenIdConnectOptions to true: 5, 2019

services.AddAuthentication() ﬂj T
0
ther registration ®

.AddOpenIdConnect("oidc", options => {

port has been added to passport-
C 7636.

s ’

https://www.baeldung.com/spring-security-pkce-secret-clients

@) dr.onli https.//medium.com/passportjs/pkce-support-for-oauth-2-0-e3a77013b278
par.oniine https.//www.scottbrady91.com/openid-connect/aspnet-core-using-proof-key-for-code-exchange-pkce#pkce-3

Understanding OAuth and OpeniID Connect

LONG-TERM ACCESS WITH REFRESH TOKENS

@ pdr.online

THE REFRESH TOKEN FLOW

SECURITY
TOKEN
SERVICE

Request new access token
with refresh token 0 e Access token
and client authentication

\ 4

e Request with Q
new access token

BACKEND / (@) Response API

@ pdr.online

THE REFRESH TOKEN FLOW

SECURITY
TOKEN
SERVICE

The client application decides
when to use a refresh token to
get new access tokens

Request new access token

—0 with refresh token 0 e Access token

and client authentication

T

Another option is to monitor error responses from the API
when an expired token is rejected.

One option is to use the expires _in parameter in the token A4
response to figure out when the access token expires.

@ pdr.online

BACKEND

e Request with
new access token

o Response

API

THE REFRESH TOKEN FLOW

SECURITY
TOKEN
SERVICE

The client application decides
when to use a refresh token to
get new access tokens

Request new access token

—0 with refresh token a e Access token

and client authentication

T

If the client only needs infrequent one-shot access to the A 4
API, it can consider not storing access tokens and running
a refresh token flow each time it needs an access token

¢ pdr.online

BACKEND

e Request with
new access token

c Response

API

|:| Using refresh tokens

@ pdr.online

How does the client store a refresh token?

@ pdr.online

Buffer security breach has been resolved - here is
what you need to know

Oct 27,2013 8 min read

Joel Gascoigne
CEO and co-founder @ Buffer

Update: This article was originally titled “Buffer has been hacked - here is
what’s going on”. The hacking incident happened yesterday (Saturday) and
below is a recap of everything that happened. Please ask us any questions
you have in the comments below.

If you're reading this, the most important section for you is Update 7.

We've discovered the source of the breach and closed the vulnerability. Keep
reading for the full story.

https://buffer.com/resources/buffer-has-been-hacked-here-is-whats-going-on/

HANDLING REFRESH TOKENS AT THE CLIENT

* The refresh token should be considered as sensitive as user credentials
* This is somewhat nuanced since using the refresh token requires client authentication
* When an attacker gains access to both, the users are in major trouble

* A minimum security requirement is guaranteeing confidential storage
* This approach fails if an attacker gains access to the encrypted data and the keys

* Consider moving refresh tokens to an isolated service in your architecture

* The main application can request a new access token from this service
* Only the service has access to the encrypted refresh tokens and associated keys
* This compartmentalization reduces the impact of application-level compromises

@ pdr.online

How does the client get a refresh token?

@ pdr.online

USER

GETTING A REFRESH TOKEN FROM THE STS

e I am Philippe with password FluffyDog17!
e Request to the STS to initialize the flow

<€

e Who are you? Please authenticate to me!

e Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

Exchange the authorization code from step 10

Sometimes, the client is expected
to request the offline_access
scope when initializing the flow

@ Follow redjct to the application's callback endpoint

a Request th

and include the code verifier @

triggers the initialization of the flow

<€

:

0 Initialize the flow and include the code challenge

Generate a random value (code verifier) and a
associate it with the user's session (e.g., keep in a cookie)

SECURITY
TOKEN
SERVICE

Store the code challenge
e along with the
authorization code

Calculate the SHA256
hash of the code verifier
and compare to the
stored code challenge

Relevant tokens for this
particular use case, including a
refresh token T

Some STS configurations
automatically issue a refresh
token to certain clients

BACKEND

Calculate the SHA256 hash
of the code verifier
(code challenge)

What is the lifetime of the refresh token?

@ pdr.online

REFRESH TOKEN LIFETIMES

* The exact refresh token lifetime is at the discretion of the STS
* Refresh token lifetimes in real-world scenarios can be hours, months, or eternity
* The STS can change its lifetime policy at will, or make it dependent on the type of client

* Refresh tokens can also be revoked at the STS
* Clients can revoke refresh tokens when they no longer need them
* Users can often revoke refresh tokens to revoke a client's authority to act on their behalf

 When a refresh token is no longer valid, there is no path to recovery
* The only way for the client to regain access is by running a new Authorization Code flow
* For backend client applications, this often includes explicitly requesting user involvement

@ pdr.online

SESSION RE-USE AND SINGLE SIGN-ON

@ pdr.online

THE AUTHORIZATION CODE FLOW

|
4) e I am Philippe with password FluffyDog17! I
e Request to the STS to initialize the flow l
- |
. ECURITY
0 Who are you? Please authenticate to me! ST((:)LIJ(EN :
SERVICE I
|

e Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

A server-to-server reguest to exchange e Relevant tokens for this

The STS uses cookies to keep track of the authenticated [e from step 7 particular use case
user. Every subsequent request from the browser to the

STS will carry this cookie, enabling session re-use and SSO.

@ Handle tokens according
to the use case at hand

0 Follow redirect to the application's callback endpoint
a Request that triggers the initialization of the flow

>

<€

G Initialize the flow with the STS by redirecting the browser BACKEND

RUNNING A FLOW WITH AN AUTHENTICATED SESSION

USER

e Request to the STS to initialize the flow

0 Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

A server-to-server request to exchange
the authorization code from step 7

e Follow redirect to the application's callback endpoint
a Request that triggers the initialization of the flow

<€

>

G Initialize the flow with the STS by redirecting the browser

SECURITY
TOKEN
SERVICE

e Relevant tokens for this
particular use case

e Handle tokens according
to the use case at hand

BACKEND

RE-USING AN AUTHENTICATED SESSION FOR SINGLE SIGN-ON

USER

e Request to the STS to initialize the flow

0 Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

SECURITY
TOKEN
SERVICE

A server-to-server request to exchange
the authorization code from step 7

e Follow redirect to the application's callback endpoint
a Request that triggers the initialization of the flow

<€

>

G Initialize the flow with the STS by redirecting the browser

e Relevant tokens for this
particular use case

Handle tokens according
to the use case at hand

ACKEND

USER SESSIONS WITH THE STS

* Managing the session of the user is the responsibility of the STS
* The STS has full control over how the session is managed and set
* The STS decides how long a user's session should be valid
* The STS can use inactivity timeouts to terminate sessions when desired

* As long as the user has an active session with the STS, there is no logout
* Whenever a client runs an Authorization Code flow, it will re-use the existing session
* Application architectures often have to decide if they want to implement Single Logout

* There is no explicit link between session lifetimes and token lifetimes
* For backend clients, use cases typically require long-term access using refresh tokens
* For other types of clients (web, mobile), refresh tokens may resemble sesion lifetimes
* Some highly-restrictive scenarios actively invalidate refresh tokens upon user logout

@ pdr.online

The prompt parameter allows the client to

control user interaction with the STS

@ pdr.online

USING THE PROMPT PARAMETER TO CONTROL USER INTERACTION

(

USER

\

e Request to the STS to initialize the flow

<€

° Good. Now follow this redirect back to the application,

SECURITY
TOKEN

so it can extract the authorizati ala-d Aloatin)l

The STS handles user interaction based on the
prompt parameter. If none is specified and the
user is not authenticated, an error is returned.

A server-to-server request to exchange
the authorization code from step 7

The client can set prompt=none
to indicate that the STS should
not prompt the user

e Follow redirect to the application's cjllback endpoint

a Request that triggers the initialization of the flow

<€

1 >

a Initialize the flow and include the prompt parameter

BACKEND

Relevant tokens for this
particular use case

e Handle tokens according

to the use case at hand

D The prompt parameter in action

@ pdr.online

THE PROMPT PARAMETER

 The prompt parameter can be used to advise the STS on user interaction
e Part of the OIDC specification, but supported by most OAuth implementations

* The value is a space-delimited list with these defined values:
* The value none implies that user interaction is not allowed
* The value login implies that user authentication is required, even if a session exists
* The value consent implies that user consent is required, even if previously given
* The value select _account implies that the user has to explicitly select an account

* Running flows without user interaction is useful for background scenarios
e E.g., running a silent flow during bootstrapping to get tokens if the user is authenticated
e E.g., running a silent flow to renew access or refresh tokens without prompting the user

* Silent flows only work if the user's browser has an active session with the STS
@) pdr.online

OAUTH 2.0 AND OIDC FOR MOBILE APPS

@ pdr.online

THE AUTHORIZATION CODE FLOW FOR MOBILE APPS

USER

e I am Philippe with password FluffyDog17!
a Request to the STS to initialize the flow

<€

e Who are you? Please authenticate to me!

e Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

Exchange the authorization code from step 9
and include the code verifier, but no client authentication

0 Redirect back to the app with the authorization code

<€

o Launch an embedded system browser to initialize the flow

Generate a random value (code verifier) and
store it on the user's device

Store the code challenge
a along with the
authorization code

Calculate the SHA256

SECURITY .
TOKEN hash of the code verifier
SERVICE and compare to the

stored code challenge

@ Relevant tokens for this

particular use case

@ Handle tokens according
to the use case at hand

Calculate the SHA256 hash
of the code verifier
(code challenge)

CLIENT

Ongoing work in the OAuth working group

is looking into a native UX for mobile apps

OAUTH AND OIDC FOR MOBILE APPS

e Current best practice for mobile apps is to use the Authorization Code flow
* The mobile app is a public client, without the ability to authenticate to the STS
* PKCE ensures the security of the flow, since only the right client can exchange the code

* Mobile apps are supposed to run the flow in an embedded system browser
* Available as the SFSafariViewController (i0OS) or Chrome Custom Tabs (Android)
* This browser is more secure than a webview because the application cannot inspect it
* The embedded system browser can re-use existing sessions, enabling SSO scenarios

* The mobile app can obtain a refresh token for long-term access
* Secure token storage options include the OS' keychain, or using OS-protected encryption
* The use of refresh token rotation helps avoid refresh token abuse

@ pdr.online

REFRESH TOKEN ROTATION

App obtains tokens App refreshes tokens App refreshes tokens App refreshes tokens
AT1 and RT1 Use RT1 Use RT2 Use RT3
Receive AT2 and RT2 Receive AT3 and RT3 Receive AT4 and RT4
: AT1 expires : AT2 expires : AT3 expires

¢ pdr.online

DETECTING REFRESH TOKEN ABUSE

App obtains tokens App refreshes tokens App refreshes tokens
AT1 and RT1 Use RT1 Use RT2
Receive AT2 and RT2

: AT1 expires Attacker uses RT2 : AT2 expires
Receive AT3 and RT3 | Authorization server notices reuse of RT2
Attacker steals RT2 No tokens are issued
RT3 is revoked

¢ pdr.online

D Refresh token rotation in action

@ pdr.online

OAUTH 2.0 AND OIDC FOR WEB FRONTENDS

@ pdr.online

THE AUTHORIZATION CODE FLOW FOR FRONTEND WEB APPS

USER

I am Philippe with password FluffyDog17!
Request to the STS to initialize the flow

<€

Who are you? Please authenticate to me!

Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

Exchange the authorization code from step 9
and include the code verifier, but no client authentication

Relaunch the frontend with the authorization code

<€

Redirect the browser to initialize the flow

Generate a random value (code verifier) and
store it in the browser (E.g., localStorage)

@

SECURITY
TOKEN
SERVICE

CLIENT

Store the code challenge
a along with the
authorization code

Calculate the SHA256
hash of the code verifier
and compare to the
stored code challenge

Relevant tokens for this
particular use case

@ Handle tokens according

to the use case at hand

Calculate the SHA256 hash
of the code verifier
(code challenge)

THE AUTHORIZATION CODE FLOW FOR FRONTEND WEB APPS

N\ . . Store the code challenge
/
e I am Philippe with password FluffyDog17'! 0 along with the
e Request to the STS to initialize the flow authorization code
€ SECURITY Calculate the SHA256
e Who are you? Please authenticate to me! TOKEN hash of the code verifier
SERVICE and compare to the

e Good. Now follow this redirect back to the application,
so it can extract the authorization code from the URL

Frontend web applications often become the
E victim of malicious JS code. When that his

stored code challenge

Exchange the authorizat
and include the code verifier, but no{ happens, the attacker can obtain access and

USER refresh tokens, giving them full access to APIs
on behalf of the user.

@ Handle tokens according

to the use case at hand
e Redirect the browser to initialize the flow CLIENT Calculate the SHA256 hash
) e of the code verifier

0 Relaunch the frontend with the authorization code

<€

Generate a random value (code verifier) and
hall
store it in the browser (E.g., localStorage) 0 (code challenge)

Frontend web applications should use the
Backend-For-Frontend pattern to secure

their OAuth implementations

@ pdr.online

® 0 @« Theinsecurityof ODAh20 X =

4 Lot [# youtuba.com/wat

» YouTube

THE INSECURITY OF OAUTH 2.0
IN FRONTENDS

DR. PHILIPPE DE RYCK

https://Pragmatic Web Security.com

NDC { Security }

The insecurity of OAuth 2.0 in frontends - Philippe de Ryck - NDC Security 2023

@ 2o
S7K sulacnbers

| B 2 B DI

@7 pdr.online https.//www.youtube.com/watch?v=0pFN6gmct8c

THE CLIENT CREDENTIALS FLOW

@ pdr.online

USING OAUTH 2.0 FOR MACHINE-TO-MACHINE ACCESS

Can | get an access token
to access the API

Examples include
scheduled cron jobs,
GitHub actions,

configuration tools, ...

Use OAuth 2.0 to obtain an
access token, representing
the client's authority to
access the API directly.

SECURITY
TOKEN
SERVICE

0 a The access token representing
the authority to access the API

CLIENT

Access APl with
access token

o

API

THE OAUTH 2.0 CLIENT CREDENTIALS FLOW

SECURITY
TOKEN
SERVICE

Can | get an access token o The access token representing
to access the API the authority to access the API

Access APl with Q
access token > QQ

CLIENT API

€ 7he request to obtain an access token

1 POST /oauth/token

2 Host: sts.restograde.com

3

4 grant_type=client_credentials e Indicates the client credentials flow

5 &client_id=2JqcsqEpZfYNHxDazVMMKPT60UG6C7ZZS The client exchanging the code

6 &client_secret=xEJRXoe..Vd_BjB e The client needs to authenticate to the STS

THE OAUTH 2.0 CLIENT CREDENTIALS FLOW

¥
2,

TOKEN
SERVICE

A

Can | get an access token o o The access token representing
to access the API the authority to access the API

A 4

o Access APl with Q
access token N

CLIENT API

¢ pdr.online

Q The response from the Security Token Service

1o

2 "access_token": "eyJhbGciO..encDDLQ", . The access token to access APIs

3 "token_type": "Bearer",

4 "expires_in": 3600, e The expiration time of the access token
5}

THE OAUTH 2.0 CLIENT CREDENTIALS FLOW

¥
2,

TOKEN
SERVICE

A
Can | get an access token o The access token representing
to access the API the authority to access the API
A 4
o Access APl with Q
access token N
CLIENT API

¢ pdr.online

THE OAUTH 2.0 CLIENT CREDENTIALS FLOW

* The client is another application that needs to access APlIs
* The client is accessing the APl directly, on its own behalf

* There is no user involved in the Client Credentials flow
* This is an OAuth 2.0-only flow, not an OpenlD Connect flow, so identity tokens are not used

* The Client Credentials flow fits within OAuth 2.0 as an authorization framework
* The access token issued by the STS represents the client's authority
* APIs already know how to handle access tokens, so little needs to change

* The Client Credentials flow only works with confidential clients
* Requesting access tokens requires authentication with a secret kept by the client
e Confidential clients need to run in a secure environment (server-side systems)

THE PURPOSE OF SCOPES

@ pdr.online

The value is a space-delimited Applications can define
string with scope values custom scopes

l l

scope=openid email profile read:reviews

| |

A mechanism provided by OAuth 2.0 does not define any
OAuth 2.0 to define the scope scope values, but OIDC has a
of an access token set of reserved scopes

¢ pdr.online

@ pdr.online

Gmail API, v1

Scopes

https://mail.google.com/

https://www.googleapis.com/auth/gmail.addons.current.action.compose

https://www.googleapis.com/auth/gmail.addons.current. message.action

Read, compose, send, and permanently delete all your
email from Gmail

Manage drafts and send emails when you interact with
the add-on

View your email messages when you interact with the
add-on

https://www.googleapis.com/auth/gmail.addons.current.message.metadata View your email message metadata when the add-on is

running

https://www.googleapis.com/auth/gmail.addons.current.message.readonly ~ View your email messages when the add-on is running

https://www.googleapis.com/auth/gmail.compose
https://www.googleapis.com/auth/gmail.insert
https://www.googleapis.com/auth/gmail.labels

https://www.googleapis.com/auth/gmail. metadata

https://www.googleapis.com/auth/gmail.modify
https://www.googleapis.com/auth/gmail.readonly
https://www.googleapis.com/auth/gmail.send
https://www.googleapis.com/auth/gmail.settings.basic

https://www.googleapis.com/auth/gmail.settings.sharing

Google Analytics API, v3

Scopes

https://www.googleapis.com/auth/analytics
https://www.googleapis.com/auth/analytics.edit
https://www.googleapis.com/auth/analytics. manage.users
https://www.googleapis.com/auth/analytics.manage.users.readonly

https://www.googleapis.com/auth/analytics.provision

https://www.googleapis.com/auth/analytics.readonly

https://www.googleapis.com/auth/analytics.user.deletion

Manage drafts and send emails
Insert mail into your mailbox
Manage mailbox labels

View your email message metadata such as labels and
headers, but not the email body

View and modify but not delete your email
View your email messages and settings
Send email on your behalf

Manage your basic mail settings

Manage your sensitive mail settings, including who can
manage your mail

View and manage your Google Analytics data

Edit Google Analytics management entities

Manage Google Analytics Account users by email address
View Google Analytics user permissions

Create a new Google Analytics account along with its default
property and view

View your Google Analytics data

Manage Google Analytics user deletion requests

Google Sheets API, v4

Scopes

https://www.googleapis.com/auth/drive

https://www.googleapis.com/auth/drive file

https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/spreadsheets

https://www.googleapis.com/auth/spreadsheets.readonly

Google Sign-In

Scopes

profile
email

openid

Google Site Verification API, v1

Scopes

https://www.googleapis.com/auth/siteverification

https://www.googleapis.com/auth/siteverification.verify_only

Google Slides API, v1

Scopes

https://www.googleapis.com/auth/drive

https://www.googleapis.com/auth/drive file

https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/presentations
https://www.googleapis.com/auth/presentations.readonly
https://www.googleapis.com/auth/spreadsheets

https://www.googleapis.com/auth/spreadsheets.readonly

See, edit, create, and delete all of your Google Drive files

View and manage Google Drive files and folders that you have opened or
created with this app

See and download all your Google Drive files
See, edit, create, and delete your spreadsheets in Google Drive

View your Google Spreadsheets

View your basic profile info
View your email address

Authenticate using OpenID Connect

Manage the list of sites and domains you control

Manage your new site verifications with Google

See, edit, create, and delete all of your Google Drive files

View and manage Google Drive files and folders that you have opened or
created with this app

See and download all your Google Drive files

View and manage your Google Slides presentations

View your Google Slides presentations

See, edit, create, and delete your spreadsheets in Google Drive

View your Google Spreadsheets

https://developers.google.com/identity/protocols/oauth2/scopes

GitHub

@ pdr.online

Available scopes

Name

(no scope)

repo

repo:status

repo_deployment

public_repo

repo:invite

security_events

admin: repo_hook

write:repo_hook
read: repo_hook

admin:org

write:org

read:org

Description

Grants read-only access to public information (includes public user
profile info, public repository info, and gists)

Grants full access to private and public repositories. That includes
read/write access to code, commit statuses, repository and organization
projects, invitations, collaborators, adding team memberships,
deployment statuses, and repository webhooks for public and private
repositories and organizations. Also grants ability to manage user
projects.

Grants read/write access to public and private repository commit
statuses. This scope is only necessary to grant other users or services
access to private repository commit statuses without granting access to
the code.

Grants access to deployment statuses for public and private repositories.
This scope is only necessary to grant other users or services access to
deployment statuses, without granting access to the code.

Limits access to public repositories. That includes read/write access to
code, commit statuses, repository projects, collaborators, and
deployment statuses for public repositories and organizations. Also
required for starring public repositories.

Grants accept/decline abilities for invitations to collaborate on a
repository. This scope is only necessary to grant other users or services
access to invites without granting access to the code.

Grants read and write access to security events in the code scanning API.

Grants read, write, ping, and delete access to repository hooks in public
and private repositories. The repo and public_repo scopes grants full

access to repositories, including repository hooks. Use the
admin: repo_hook scope to limit access to only repository hooks.

Grants read, write, and ping access to hooks in public or private
repositories.

Grants read and ping access to hooks in public or private repositories.
Fully manage the organization and its teams, projects, and memberships.

Read and write access to organization membership, organization
projects, and team membership.

Read-only access to organization membership, organization projects,
and team membership.

https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/scopes-for-oauth-apps

admin:org

write:org

read:org

admin:public_key

write:public_key

read:public_key

admin:org_hook

gist

notifications

user

read:user

user:email

user:follow
delete_repo

write:discussion

read:discussion

write:packages

read:packages

delete:packages

Fully manage the organization and its teams, projects, and memberships.

Read and write access to organization membership, organization
projects, and team membership.

Read-only access to organization membership, organization projects,
and team membership.

Fully manage public keys.

Create, list, and view details for public keys.

List and view details for public keys.

Grants read, write, ping, and delete access to organization hooks. Note:
OAuth tokens will only be able to perform these actions on organization
hooks which were created by the OAuth App. Personal access tokens will
only be able to perform these actions on organization hooks created by a
user.

Grants write access to gists.

Grants:

* read access to a user's notifications

* mark as read access to threads

* watch and unwatch access to a repository, and

* read, write, and delete access to thread subscriptions.

Grants read/write access to profile info only. Note that this scope
includes user:email and user:follow .

Grants access to read a user's profile data.

Grants read access to a user's email addresses.
Grants access to follow or unfollow other users.
Grants access to delete adminable repositories.

Allows read and write access for team discussions.

Allows read access for team discussions.

Grants access to upload or publish a package in GitHub Packages. For
more information, see "Publishing a package" in the GitHub Help
documentation.

Grants access to download or install packages from GitHub Packages.
For more information, see "Installing a package" in the GitHub Help
documentation.

Grants access to delete packages from GitHub Packages. For more
information, see "Deleting packages" in the GitHub Help documentation.

PRACTICAL GUIDELINES FOR DEFINING SCOPES

e Unless you are Google, you probably do not need hundreds of scopes
* People sometimes run into length limits for the scope parameter, which is a bad smell

* |f clients need access to every API in the system, then you don't need scopes
* Scopes enforce compartmentalization, but do not replace existing authorization systems

* Guidelines to define scopes

 Start by identifying logical groupings in the APlIs permission Description
* E.g., reviews and restaurants

 Determine if different access levels are needed
e E.g., restaurants is used by a single client write:reviews Write reviews
* E.g., read:reviews is for third-party clients

* |solate extremely sensitive permissions
e E.g., delete:reviews is only possible after consent restaurants Manage restaurant information

read:reviews Read reviews

delete:reviews Delete reviews

Scopes allow the user to delegate a subset

of their full authority to a client application

@ pdr.online

|:| Using scopes

@ pdr.online

SCOPES AND THEIR LIMITATIONS

* Scopes were initially defined to reduce the authority given to a client
* Scopes are closely linked to user consent, which is relevant in third-party scenarios
* Statically defined scopes are mainly useful for static delegation scenarios

* Advanced use cases often use dynamic scopes that relate to business domains
* With a dynamic scope, clients can request the authority to access specific objects
* Dynamic scopes require a close coupling between the STS and authorization logic

 Rich Authorization Requests (RAR) further enhance the concept of scopes
* RAR is a recent addition to the OAuth landscape, aimed to support complex scenarios
e E.g., aclient can request the authority to perform a wire transfer for a certain amount

@ pdr.online

ACCESS TOKENS AND ACCESS TOKEN TYPES

@ pdr.online

OAuth 2.x

Help me out here, l
is this client allowed to do that?

) (%

API API

Can you handle this for me please?

! o

OAuth 2.x API

¢ pdr.online

¢ pdr.online

The access token can be a self-contained
token or a reference token

Access APl with
access token

CLIENT

The STS decides which type of token to
use, and how to format them. Clients

Oﬁ The API is expected to use

ﬁ e— the access token to make
authorization decisions

API

are explicitly forbidden to rely on the
format and contents of the access token.

Note that contraty to access
tokens, identity tokens are
intended to be consumed
by the client.

SECURITY
TOKEN
SERVICE

The claims associated with the
access token

Perform token introspection to
translate a token into claims

Access APl with
access token

CLIENT

A reference token

vSvhNDeQLqrzRbvA2eeYE2PthB1lcBimS

¢ pdr.online

SECURITY
TOKEN
SERVICE

The claims associated with the
access token

Perform token introspection to
translate a token into claims

Access APl with
access token

CLIENT

 pdr.online

€ 7he token introspection response

1 {

"active": true,
"iss": "https://sts.restograde.com",
"sub": '"2262430d-c9cb-484f-9770-805893ff9518",

"scope": "reviews:read",

N OO 0 B W N

o

SECURITY
TOKEN
SERVICE
A
Perform token introspection to 6 e The claims associated with the
translate a token into claims access token
\ 4

Access API with
‘ a access token - Og

CLIENT API

¢ pdr.online

TOKEN INTROSPECTION

* The fields returned are all marked as optional, except for active
* The active field indicates if a token is still valid or not
* The other fields are only present if a token is valid and provide context information

* Ultimately, the STS is in control over what is returned during introspection
* The returned information can include custom fields
* Depending on which APl is asking, more or less information may be included

* The main benefit of reference tokens is the high degree of control by the STS
* Revoked tokens will be invalid the next time they are introspected
* The downside of reference tokens is the mandatory token introspection step

@ pdr.online

eyJhbGci01JSUzIINiIsInR5cCI6IkpXVCIsImtpZC
I6IK5UVKIPVFUzTXpCQk9FVXd0emhCUTBWRA1rUTBR
VVU1UVRZeFFVVX1PVU5FUVVVeE5gRXINdyJ9.eyJpc
3Mi1i01iJodHRwczovL3NOcy5yZXNOb2dyYWR1LmNvbS8
iLCIzdWIi0iJhdXROMHW1ZWISMTZjMjU4YmMRINTB1Z
jIwMzY2YZzY1iLCJhdWQi01lsiaHROcHM6LY9hcGkucmV
zdGI9ncmFkZS5jb20iLCJodHRwczovL3J1c3RvZ3JhZ
GUUZXUuYXV@aDAuY29tL3VzZXIpbmZvI1@sImlhdCI
6MTU40Tc3NTA3MiwiZXhwIjoxNTg50DYXNDcyLCJIhe
NA101JPTEtObjM40VNVSW11ZkV4Z1IJHMVIpbEXTZ2R
ZeHdFcCIsInNjb3B1lIjoib3BlbmlkIHBYyb2ZpbGUgZ
W1lhaWwgb2ZmbGluZV9hY2N1c3MifQ.XzJOXtTX0GOS
bCFvp4yZGIzh7XhMmOmI2XxtjwWd1l0Dz_siI-u8hlle
lcr8LwX6-hL20Q0W0eStzBzmm1FM_tS7MxuKKkYx8Q1l
TWOURPembVKZOhNi8kN-1j@pyc@Quzve7Jib5vcxmkP
wgpcVDFACgP85_0NYe4zXHKxCA5_8VOn@5cRCDSKNM o

c Access APl with OQ
g %

CLIENT API

To validate a self-contained token, the API uses the
public key of the STS, which can be loaded from a
dedicated endpoint on the STS. Once loaded, the

public key can be reused for future token validations

TFzGJCT9ipCcNXaVGdksojYGgQzezjpzzzwrtPEKiy
FLFtDPZA1OM1eF30FAOCBKOUKuUNjJ_cSBbUsalIwfvK
OWH47AwF rRn_TxL4S1P3j3b1GgBm8tAqXysY84VZu0d
rsqg3zrZj1PnoqPD4mb0Xds20xafCr9wR4WTQ

@ pdr.online

Self-contained tokens are typically
formatted as JWTs and are signed by
the STS

!

The contents of the self-contained
token are similar claims as obtained
through token introspection.

VERIFYING SELF-CONTAINED ACCESS TOKENS

* The APl is typically configured with a trusted STS
* The STS will provide access tokens, which will be used to make authorization decisions
* With the URL of the STS, the API can bootstrap its token verification mechanism
* The APl must verify the integrity of a self-contained access token before using the data

* Access token verification is typically implemented in middleware
* Barebones JWT libraries can handle most of these details
* Many languages offer resource server libraries, which deal with access tokens specifically

* The introspection RFC also allows token introspection for self-contained tokens
* Introspecting JWTs can be used to detect revocation before the token expires

@ pdr.online

Which token type is right for you?

The trade-off is between security and

performance

@ pdr.online

REFERENCE TOKENS VS SELF-CONTAINED TOKENS

* Due to the perfomance impact, token introspection is often only used locally
* SaaS-based STS implementations often do not support reference tokens
* APIs can handle token introspection, but gateways often take this responsibility

* Reference tokens are easy to revoke before they expire
e Revoking self-contained tokens is possible, but requires propagating this info to all APIs
* Relying on fast revocation is typically handled automatically, not manually
e E.g., an anomaly-detection system that revokes tokens from suspicious requests

* Both reference tokens and self-contained access tokens have a limited lifetime
* When an access token expires, the client uses a refresh token to contact the STS
* Refresh tokens can also easily be revoked, preventing the issuing of a new access token
* Short access token lifetimes (e.qg., 5 — 10 mins) improve revocation properties

@ pdr.online

MAKING AUTHORIZATION DECISIONS WITH ACCESS TOKENS

The client provides the access token

4

At the end of this step, the access token is
transformed into a uniform set of claims

The audience is used by the Resource
Indicators spec & some STS implementations

Verify JWT signature and check Introspect the token with the STS
exp, nbf, and iss claims and check the active claim
Check additional/optional API-specific claims (E.g., aud) o—

Check generic authorization (E.g., scope) o—

Generic authorization checks often correspond
to function-level access control

4

Make specific authorization decisions
(E.g., check the user, the client ID, a customer ID, ...)

The sub claim contains the user ID (if relevant),
but custom claims can contain all kinds of data

@ pdr.online

D Implementing APl authorization

@ pdr.online

AND THERE'S MORE ...

@ pdr.online

AND THERE'S MORE, SO MUCH MORE ...

@ pdr.online

® 0 @« Theinsecurityof ODAh20 X =

4 Lot [# youtuba.com/wat

» YouTube

THE INSECURITY OF OAUTH 2.0
IN FRONTENDS

DR. PHILIPPE DE RYCK

https://Pragmatic Web Security.com

NDC { Security }

The insecurity of OAuth 2.0 in frontends - Philippe de Ryck - NDC Security 2023

@ 2o
S7K sulacnbers

| B 2 B DI

@7 pdr.online https.//www.youtube.com/watch?v=0pFN6gmct8c

Internet Engineering Task Force (IETF) B. Campbell
Request for Comments: 8707 Ping Identity
Category: Standards Track J. Bradley
Published: February 2020 Yubico
ISSN: 2070-1721 H. Tschofenig

Arm Limited

Resource Indicators for OAuth 2.0

Abs"
Internet Engineering Task Force (IETF) T. Lodderstedt
Request for Comments: 9126 yes.com
Category: Standards Track B. Campbell
| Published: September 2021 Ping Identity
' ISSN: 2070-1721 N. Sakimura
| NAT.Consulting
D. Tonge
- Moneyhub Financial
Technology
F. Skokan
Auth@

OAuth 2.0 Pushed Authorization Requests
Abstract

This document ¢ Internet Engineering Task Force (IETF)

endpoint, whict Request for Comments: 9396

authorization 1 category: Standards Track

request and pIC ppyjshed: May 2023 Bespol

reference to tt
endpoint. ISSN: 2070-1721

OAuth 2.0 Rich Authorization Requests

Abstract

This document specifies a new parameter authorization_det
is used to carry fine-grained authorization data in OAuth messages.

¢ pdr.online

Workgroup:
Published:
Authors:

FAPI 2.0 Security Profile — draft

Foreword

The OpenID Foundation (OIDF) promotes, protects and nurtures the OpenID community and technologies. As
a non-profit international standardizing body, it is comprised by over 160 participating entities (workgroup
participant). The work of preparing implementer drafts and final international standards is carried out
through OIDF workgroups in accordance with the OpenlID Process. Participants interested in a subject for
which a workgroup has been established have the right to be represented in that workgroup. International
organizations, governmental and non-governmental, in liaison with OIDF, also take part in the work. OIDF
collaborates closely with other standardizing bodies in the related fields.f

Final drafts adopted by the Workgroup through consensus are circulated publicly for the public review for 60
days and for the OIDF members for voting. Publication as an OIDF Standard requires approval by at least 50%
of the members casting a vote. There is a possibility that some of the elements of this document may be
subject to patent rights. OIDF shall not be held responsible for identifying any or all such patent rights.

fapi

13 September 2023

D. Fett D. Tonge

Authlete Moneyhub Financial Technology

Internet Engineering Task Force (IETF) N. Sakimura
Request for Comments: 9101 NAT . Consulting
Category: Standards Track J. Bradley
Published: August 2021 Yubico
ISSN: 2070-1721 M. Jones

Microsoft

The OAuth 2.0 Authorization Framework: JWT-Secured Authorization Request
(JAR)

Abstract

The authorization request in OAuth 2.0 described in RFC 6749 utilizes
query parameter serialization, which means that authorization request
parameters are encoded in the URI of the request and sent through

user agents such as web browsers. While it is easy to implement, it
means that a) the communication throuah the user aasents is not

00 ® Mastering OAuth 2.0 and Ope X =+ v

<&« C @& pragmaticwebsecurity.com/courses/mastering-oauth-oidc h w O &

TRAINING SERVICES PUBLIC EVENTS RESOURCES ABOUT CONTACT

Mastering OAuth 2.0 and OpenlD Connect

An intense deep-dive on the latest best practices

OAuth 2.0 and OpenlID Connect are crucial for securing web applications, mobile applications, APIs, and microservices. Unfortunately, getting a good grip on the
purpose and use cases for these technologies is insanely difficult. As a result, many implementations use incorrect configurations or contain security
vulnerabilities.

Let me tell you how | felt when | started digging into OAuth 2.0 and OpenlID Connect a few years ago. | had a hard time understanding what OAuth 2.0 and OpenlID Connect were supposed to solve. The
terminology made it difficult to understand what the spec was even talking about. And the flows! Each use case had a different flow, and the differences between the flows are often tiny details.

Do you recognize your struggle here? If you are feeling frustrated and overwhelmed with OAuth 2.0 and OpenlID Connect, this course is going to help you. This course takes you on a step-by-step journey into
the world of OAuth 2.0 and OpenID Connect. It explains the purpose of each technology, along with its use cases. In the course, we also dig deep into concrete scenarios, enabling you to design and
implement secure applications with OAuth 2.0 and OpenID Connect.

In a matter of hours, you gain the knowledge that usually takes months of researching dozens of specifications. Throughout the course, we build up a set of best practices that allow you to secure modern
applications.

I have worked with thousands of developers to help them understand the ins and outs of OAuth 2.0 and OpenlID Connect. | have seen them struggle, but | have also seen them succeed. That's why | can
promise you that by the end of this course, you will be confident in using OAuth 2.0 and OpenID Connect.

This course is your shortcut towards understanding OAuth 2.0 and OpenID Connect.

JOIN THIS LIVE TRAINING

https://bit.ly/oauthcourse

CONCLUSION

@ pdr.online

KEY TAKEAWAYS

1 OAuth 2.0 allows a client to access APIs (on behalf of a user)

2 OpenlD Connect allows a client to offload authentication

3 User-facing apps use the Authorization Code flow with PKCE

@ pdr.online

Connect on LinkedIn

to stay in touch PhilippeDeRyck

Want more?

Join me in November for an 8 in-depth sessions on
OAuth 2.x and OpenID Connect

https://bit.ly/oauthcourse

