
DR. PHILIPPE DE RYCK

https://Pragmatic Web Security.com

BREAKING AND SECURING
OAUTH 2.0 IN FRONTENDS



pdr.online

Authenticate the user for me?

Can I access an API please?

Request with an access token

Help me out here, 
is this access token valid?

OpenID Connect

OAuth 2.0

OAuth 2.0

OAuth 2.0



pdr.online

1 I want you to access an API on my behalf

2 Sure, let's go ask the AS for a token

3 Allow application X access on my behalf

4 Who are you? Please authenticate to me! 

5 I am Philippe with password FluffyDog17!

6 Good. Now go back to application X 
and give them this temporary value

7 Call endpoint with temporary value

8Exchange temporary value for a token 9 The access token representing
the authority to access the API

10 Access API with
access token

THE CONCEPT OF THE OAUTH 2.0 AUTHORIZATION CODE FLOW



pdr.online

OAuth 2.0 client

Token management

Calling APIs with tokens

The frontend has a client ID 
and runs the Authorization 

Code flow with the 
authorization server

The frontend is responsible 
for storing tokens and 

refreshing tokens
The frontend uses Fetch to 
call the APIs and attaches 

the access token in the 
Authorization header



OAuth 2.0 client

Token management

Calling APIs with tokens

The attacker can exfiltrate tokens, 
allowing them to abuse the application's 

access token and refresh token



https://app.restograde.com/
1 Request all data from storage or memory

2 Send data to a server controlled by the attacker

3 Abuse the stolen data (access token, refresh token)

Short-lived access tokens 
reduce the impact of 
stolen access tokens

Refresh token rotation 
prevents re-use of stolen 

refresh tokens

1

2

3



!
pdr.online

This pattern is a highly common practice 
for implementing OAuth 2.0 in frontends



https://datatracker.ietf.org/doc/html/draft-ietf-oauth-browser-based-apps.html



I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

SecAppDev organizer

https://pdr.online

I help developers with security

Hands-on in-depth security training

Advanced online security courses

Expert security advisory services



pdr.online

/in/PhilippeDeRyck

GRAB A COPY OF THE SLIDES ...

Website icons created by Uniconlabs - Flaticon

@philippederyck.bsky.social

https://pragmaticwebsecurity.com/talks



JavaScript



JavaScript
Malicious



pdr.online https://www.hackerone.com/top-ten-vulnerabilities



! XSS has been a problem for a long time





Requests and responses

Traditional web applications 
relied on server-side sessions to 

keep track of user authentication 
state



Requests and responses

XSS typically resulted in session 
hijacking attacks, which is why 

session cookies should be marked 
as HttpOnly, so they are hidden 

from JavaScript.



Requests and responses

Hiding the session cookie does 
not solve the XSS problem. An 
attacker running code in the 

browser can still impersonate the 
user and manipulate the 

frontend.



pdr.online

XSS HAS ALWAYS BEEN A PROBLEM

Traditional web applications already suffered from XSS, with session 
hijacking as a common consequence.

Even then there was a misbelief that HttpOnly cookies addressed the 
problem. However, once the malicious code runs, the attacker controls 

the client and can deceive or impersonate the user ...





https://app.restograde.com/
1 Request all data from storage or memory

2 Send data to a server controlled by the attacker

3 Abuse the stolen data (access token, refresh token)

Short-lived access tokens 
reduce the impact of 
stolen access tokens

Refresh token rotation 
prevents re-use of stolen 

refresh tokens

1

2

3



pdr.online

REFRESH TOKEN ROTATION

App obtains tokens
AT1 and RT1

AT1 expires

App refreshes tokens
Use RT1
Receive AT2 and RT2

AT2 expires

App refreshes tokens
Use RT2
Receive AT3 and RT3

AT3 expires

App refreshes tokens
Use RT3
Receive AT4 and RT4



pdr.online

App obtains tokens
AT1 and RT1

AT1 expires

App refreshes tokens
Use RT1
Receive AT2 and RT2

DETECTING REFRESH TOKEN ABUSE

AT2 expires

App refreshes tokens
Use RT2

Attacker steals RT2

Attacker uses RT2
Receive AT3 and RT3 Authorization server notices reuse of RT2

No tokens are issued
RT3 is revoked



?
pdr.online

What happens with Refresh Token Rotation 
if a stolen refresh token is never used 
twice?



pdr.online

https://app.restograde.com/

4 Abuse the latest refresh token

Token exfiltration attacks severely 
underrepresent the capabilities of 

malicious JavaScript

4

3

3 Wait until the application goes offline

1 Request all data from storage or memory

2 Send data to a server controlled by the attacker

1

2



pdr.online

Sidestepping refresh token rotation



OAuth 2.0 client

Token management

Calling APIs with tokens

The attacker can exfiltrate tokens, 
allowing them to abuse the application's 

access token and refresh token



OAuth 2.0 client

Token management

Calling APIs with tokens

The attacker can exfiltrate tokens, 
allowing them to abuse the application's 

access token and refresh token

The attacker can impersonate the 
frontend to the authorization server to 

request a new independent set of tokens



pdr.online

https://app.restograde.com/

1 Setup a handler to receive a code from an iframe

2 Start a new silent flow in an iframe

4 Send the authorization code to the attacker server

1

2

5

3

3 Obtain the authorization code from the iframe

4

5 Exchange the code for a new set of tokens

This new set of tokens is independent 
from the application's tokens, so refresh 

token rotation does not help



pdr.online

Requesting a fresh set of tokens



!
pdr.online

Additional security measures, such as 
DPoP do not work either, since the attacker 
can provide their own DPoP proofs



pdr.online

YOU CANNOT SECURE BROWSER-ONLY FLOWS

The security of OAuth 2.0 flows in the browser relies on the integrity 
of the frontend application and its origin (redirect URI).

When the attacker controls that origin, it's game over. Even proof-of-
possession mechanisms cannot save you.



pdr.online

Single-execution
token theft

Persistent 
token theft

Acquisition and extraction 
of new tokens

Proxying requests 
via the user's browser

Attack scenario Example

One-time payload stealing an 
access token or refresh token from 
the running application

Continuously stealing access 
tokens or refresh tokens from the 
running application

Duration of attack

Access tokens: limited to token lifetime
Refresh tokens: limited to detection 
with rotation

Access tokens: as long as the user is 
online or the application is open
Refresh tokens: limited to token 
lifetime after the user goes offline

THREATS TO FRONTEND OAUTH 2.0 CLIENTS

Running a silent Authorization 
Code flow to obtain a fresh access 
token and refresh token

The lifetime of the new refresh 
token (typically multiple hours 
or longer)

Triggering API calls from within the 
frontend, authenticated by the 
application's access token

As long as the user is online or 
application is open





pdr.online

Single-execution
token theft

Persistent 
token theft

Acquisition and extraction 
of new tokens

Proxying requests 
via the user's browser

Attack scenario Example

One-time payload stealing an 
access token or refresh token from 
the running application

Continuously stealing access 
tokens or refresh tokens from the 
running application

Duration of attack

Access tokens: limited to token lifetime
Refresh tokens: limited to detection 
with rotation

Access tokens: as long as user is online 
or application is open
Refresh tokens: limited to token 
lifetime after user goes offline

THREATS TO SERVER-SIDE OAUTH 2.0 CLIENTS

Running a silent Authorization 
Code flow to obtain a fresh access 
token and refresh token

The lifetime of the new refresh 
token (typically multiple hours or 
longer)

Triggering API calls from within the 
frontend, authenticated by the 
application's access token

As long as user is online or 
application is open

Server-side applications keep access tokens and refresh tokens in 
server-side storage (e.g., a database). An attacker executing 
malicious JS in the browser cannot access server-side token 

storage.

Server-side OAuth 2.0 clients need to authenticate their 
interactions with the authorization server, making it impossible 

for the attacker to exchange a stolen authorization code.

The attacker controlling pages in the browser can still send 
requests to the backend, which may result in data exfiltration or 

the execution of operations. 



pdr.online

OAUTH IN FRONTENDS INCREASES THE ATTACK SURFACE

By using OAuth 2.0 in frontend applications, the attack surface of 
the application increases. 

Attackers can impersonate the frontend application,
 allowing them to independently act in the name of the user 

for the lifetime of the refresh token.



?
pdr.online

Can we have the security of backend 
OAuth clients in our frontend applications?



pdr.online

1
Run the Authorization Code flow

without client authentication

2 Issue access token and refresh token

3 Make API requests with access token



pdr.online

THE CONCEPT OF A BACKEND-FOR-FRONTEND (BFF)

Keep track of tokens 
with cookies

1
Run the Authorization Code flow

with client authentication

2 Issue access token and refresh token

3 Proxy API requests with access token 
retrieved from session



pdr.online

4Follow redirect

2 Login

5 Authentication / client authorization

11 Logged in

8
Exchange 

authorization code 
with client authentication

9 Identity token, access token, & refresh token 

6 Redirect to BFF with code

14 Request with
access token

15 Response

THE DETAILS OF A BACKEND-FOR-FRONTEND

10 Use information from identity 
token to "authenticate" the user

1 Login

3 Initialize the authorization code flow

7 Redirect with authorization code

16 API data

12 API request

13Lookup tokens with session



pdr.online

OAuth 2.0 client

Token management

Proxying API calls translating 
cookies for tokens

Session management

OAuth 2.0 client

Token management

Calling APIs with tokens

Calling the BFF 
(with cookies)



? That sounds great, but doesn't this require 
major changes to my existing application?



pdr.online

Keep track of tokens 
with cookies

1
Run the Authorization Code flow

with client authentication

2 Issue access token and refresh token

3 Proxy API requests with access token 
retrieved from session

Remove all OAuth 2.0 
functionality from the 
frontend application

No changes, the API still 
accepts access tokens

No changes, except marking the 
client as a confidential client

The BFF runs an OAuth 
2.0/OIDC flow as a 

backend web application

The BFF proxies API calls 
and replaces cookies 

with tokens.



pdr.online

Keep track of tokens 
with cookies

1
Run the Authorization Code flow

with client authentication

2 Issue access token and refresh token

3 Proxy API requests with access token 
retrieved from session

The cookie is used to keep track of the user's 
tokens. It can be an (encrypted) object containing 

the tokens, or a session identifier pointing to 
server-side state

The cookie can be set according to security best practices:
__Host-session=…; Secure; HttpOnly; SameSite=strict



pdr.online https://github.com/manfredsteyer/yarp-auth-proxy



pdr.online https://curity.io/resources/learn/token-handler-overview/



pdr.online https://docs.duendesoftware.com/identityserver/v5/bff/



pdr.online

Single-execution
token theft

Persistent 
token theft

Acquisition and extraction 
of new tokens

Proxying requests 
via the user's browser

Attack scenario Example

One-time payload stealing an 
access token or refresh token from 
the running application

Continuously stealing access 
tokens or refresh tokens from the 
running application

Duration of attack

Access tokens: limited to token lifetime
Refresh tokens: limited to detection 
with rotation

Access tokens: as long as user is online 
or application is open
Refresh tokens: limited to token 
lifetime after user goes offline

THREATS TO FRONTENDS WITH A BFF

Running a silent Authorization 
Code flow to obtain a fresh access 
token and refresh token

The lifetime of the new refresh 
token (typically multiple hours or 
longer)

Triggering API calls from within the 
frontend, authenticated by the 
application's access token

As long as user is online or 
application is open

Only the BFF has access to the application's tokens, preventing 
an attacker executing malicious JS in the browser cannot access 

server-side token storage.

The BFF is a server-side OAuth 2.0 client using authentication on 
its interactions with the authorization server, making it 

impossible for the attacker to impersonate the BFF.

The attacker controlling the frontend can still impersonate the 
legitimate frontend and send requests to the BFF, which will be 

forward these requests to the APIs. 



pdr.online

Keep track of tokens 
with cookies

1
Run the Authorization Code flow

with client authentication

2 Issue access token and refresh token

3 Proxy API requests with access token 
retrieved from session

A compromised frontend 
application can still send 
requests through the BFF

Only endpoints exposed by the BFF 
can be abused. The attacker never 
has unfettered access to the APIs

The BFF observes all the API requests from a 
client, and can perform rate-limiting, anomaly 

detection, preventing data extraction, …



pdr.online

A BFF SIGNIFICANTLY INCREASES SECURITY

For sensitive applications, the security benefits of a 
BFF far outweigh the costs.

BFFs are often used in banking and 
healthcare scenarios, and you should do the same.



https://datatracker.ietf.org/doc/html/draft-ietf-oauth-browser-based-apps.html



pdr.online

Using OAuth 2.0 directly in the browser increases the attack surface1

Use a BFF to simplify and optimize the security of your frontends2

Follow secure coding guidelines to fix XSS in your applications3

KEY TAKEAWAYS



https://ti.to/pragmatic-web-security/oauth-security-may-2025-eur



Thank you!

https://pragmaticwebsecurity.com

Need training or security guidance?
Reach out to discuss how I can help


