E

BREAKING AND SECURING
OAUTH 2.0 IN FRONTENDS

https://Pragmatic Web Security.com

OpenlID Connect

AUTHORIZATION
SERVER OAuth 2.0

l Authenticate the user for me?

Help me out here, l
is this access token valid?

¢ Can | access an API please?

OAuth 2.0

o

CLIENT API

Q) (= AN

BACKEND FRONTEND

Request with an access token API API

I o4

OAuth 2.0 API

¢ pdr.online

THE CONCEPT OF THE OAUTH 2.0 AUTHORIZATION CODE FLOW

4 N e | am Philippe with password FluffyDog17! o
e Allow application X access on my behalf =a
€ : AUTHORIZATION
e Who are you? Please authenticate to me! SERVER
e Good. Now go back to application X
and give them this temporary value
The access token representing
Exch t lue f tok
E xehange temporary vaiue for a token 0 o the authority to access the API
USER

e Call endpoint with temporary value

— Access APl with ﬁ
a | want you to access an APl on my behalf m access token >

€
Q Sure, let's go ask the AS for a token FRONTEND API
\. J

@ pdr.online

FRONTEND

~

The frontend has a client ID
and runs the Authorization
Code flow with the
authorization server

OAuth 2.0 client ®
Token management ®
Calling APIs with tokens |e

o

_

@ pdr.online

The frontend uses Fetch to
call the APIs and attaches
the access token in the
Authorization header

The frontend is responsible
for storing tokens and
refreshing tokens

FRONTEND

~

OAuth 2.0 client

Token management

Calling APIs with tokens

o

The attacker can exfiltrate tokens,
allowing them to abuse the application’s
access token and refresh token

/

a Request all data from storage or memory

M https://app.restograde.com/

a Send data to a server controlled by the attacker

a Abuse the stolen data (access token, refresh token)

| |

Short-lived access tokens Refresh token rotation
reduce the impact of prevents re-use of stolen
stolen access tokens refresh tokens

LOCAL
STORAGE

SESSION
STORAGE

API

This pattern is a highly common practice

for implementing OAuth 2.0 in frontends

Workgroup: Web Authorization Protocol A. Parecki

Internet-Draft: Okta
draft-ietf-oauth-browser-based-apps-22 D. Waite
Published: 17 January 2025 Ping Identity
Intended Status: Best Current Practice P. De Ryck
Expires: 21 July 2025 Pragmatic Web Security

OAuth 2.0 for Browser-Based Applications

Abstract

This specification details the threats, attack consequences, security
considerations and best practices that must be taken into account
when developing browser-based applications that use OAuth 2.0.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-browser-based-apps.html

| am Dr. Philippe De Ryck

©

)4 E)?lpDelr’Es Google Developer Expert

Pragmatic Web Security

Founder of Pragmatic Web Security

<& SecAppDev SecAppDev organizer

| help developers with security

@ Hands-on in-depth security training

@ Advanced online security courses

Expert security advisory services

https://pdr.online

GRAB A COPY OF THE SLIDES ...

https://pragmaticwebsecurity.com/talks
b
OFwir 1O

: ;..’R“?&;;::;g o
/in/PhilippeDeRyck g%sa'”"?ﬁgmg-ﬁ‘;
f;%%:&'& d
Oy

@philippederyck.bsky.social

00O

@) pdr.online Website icons created by Uniconlabs - Flaticon

JavaScript

Malicious
JavaScript

23%

Top 10

g
Vulnerability
Types
18%

XSS B OPEN REDIRECT

INFORMATION DISCLOSURE I BUSINESS LOGIC ERRORS

IMPROPER ACCESS CONTROL - GENERIC [INSECURE DIRECT OBJECT REFERENCE (IDOR)
IMPROPER AUTHENTICATION - GENERIC [PRIVILEGE ESCALATION

I VIOLATION OF SECURE DESIGN PRINCIPLES [CROSS-SITE REQUEST FORGERY (CSRF)

@) pdr.online https.//www.hackerone.com/top-ten-vulnerabilities

XSS has been a problem for a long time

N

NS
\ -

Requests and responses

<€ >

BROWSER I BACKEND

Traditional web applications
relied on server-side sessions to
keep track of user authentication
state

BROWSER

<€

Requests and responses

|

XSS typically resulted in session
hijacking attacks, which is why
session cookies should be marked
as HttpOnly, so they are hidden
from JavaScript.

>

BACKEND

BROWSER

Requests and responses

<€

|

Hiding the session cookie does
not solve the XSS problem. An
attacker running code in the
browser can still impersonate the
user and manipulate the
frontend.

>

BACKEND

Traditional web applications already suffered from XSS, with session
hijacking as a common consequence.

Even then there was a misbelief that HttpOnly cookies addressed the

problem. However, once the malicious code runs, the attacker controls
the client and can deceive or impersonate the user ...

@ pdr.online

FRONTEND

a Request all data from storage or memory

M https://app.restograde.com/

a Send data to a server controlled by the attacker

a Abuse the stolen data (access token, refresh token)

| |

Short-lived access tokens Refresh token rotation
reduce the impact of prevents re-use of stolen
stolen access tokens refresh tokens

LOCAL
STORAGE

SESSION
STORAGE

API

REFRESH TOKEN ROTATION

App obtains tokens App refreshes tokens App refreshes tokens App refreshes tokens
AT1 and RT1 Use RT1 Use RT2 Use RT3
Receive AT2 and RT2 Receive AT3 and RT3 Receive AT4 and RT4
: AT1 expires : AT2 expires : AT3 expires

¢ pdr.online

DETECTING REFRESH TOKEN ABUSE

App obtains tokens App refreshes tokens App refreshes tokens
AT1 and RT1 Use RT1 Use RT2
Receive AT2 and RT2

: AT1 expires Attacker uses RT2 : AT2 expires
Receive AT3 and RT3 | Authorization server notices reuse of RT2
Attacker steals RT2 No tokens are issued
RT3 is revoked

¢ pdr.online

What happens with Refresh Token Rotation

if a stolen refresh token is never used
twice?

@ pdr.online

a Request all data from storage or memory

a Send data to a server controlled by the attacker

M https://app.restograde.com/

a Wait until the application goes offline

0 Abuse the latest refresh token

!

Token exfiltration attacks severely
underrepresent the capabilities of
malicious JavaScript

SESSION
STORAGE

LOCAL
STORAGE

AUTHORIZATION
SERVER

@ pdr.online

|:| Sidestepping refresh token rotation

@ pdr.online

FRONTEND

~

OAuth 2.0 client

Token management

Calling APIs with tokens

o

The attacker can exfiltrate tokens,
allowing them to abuse the application’s
access token and refresh token

/

FRONTEND

~

OAuth 2.0 client

The attacker can impersonate the

Token management

frontend to the authorization server to
request a new independent set of tokens

The attacker can exfiltrate tokens,

Calling APIs with tokens

allowing them to abuse the application’s

access token and refresh token

o

/

Setup a handler to receive a code from an iframe

Start a new silent flow in an iframe

M https://app.restograde.com/

Obtain the authorization code from the iframe

Send the authorization code to the attacker server

Exchange the code for a new set of tokens

!

This new set of tokens is independent
from the application's tokens, so refresh
token rotation does not help

AUTHORIZATION
SERVER

@ pdr.online

|:| Requesting a fresh set of tokens

@ pdr.online

Additional security measures, such as
DPoP do not work either, since the attacker

can provide their own DPoP proofs

@ pdr.online

The security of OAuth 2.0 flows in the browser relies on the integrity
of the frontend application and its origin (redirect URI).

When the attacker controls that origin, it's game over. Even proof-of-
possession mechanisms cannot save you.

@ pdr.online

THREATS TO FRONTEND OAUTH 2.0 CLIENTS

Attack scenario

Example

Duration of attack

Single-execution
token theft

Persistent
token theft

Acquisition and extraction
of new tokens

Proxying requests
via the user's browser

@ pdr.online

One-time payload stealing an
access token or refresh token from
the running application

Continuously stealing access
tokens or refresh tokens from the
running application

Running a silent Authorization
Code flow to obtain a fresh access
token and refresh token

Triggering API calls from within the
frontend, authenticated by the
application's access token

Access tokens: limited to token lifetime
Refresh tokens: limited to detection
with rotation

Access tokens: as long as the user is
online or the application is open
Refresh tokens: limited to token
lifetime after the user goes offline

The lifetime of the new refresh
token (typically multiple hours
or longer)

As long as the user is online or
application is open

T

A e Y I

THREATS TO SERVER-SIDE OAUTH 2.0 CLIENTS

Attack scenario Example Duration of attack

server-side storage (e.g., a database). An attacker executing
malicious JS in the browser cannot access server-side token - is online

PRersistent : EI"E"I storage.
talkkoan
I I F LUL,..JU L_.L_J.L\JL.J : .
rorRtReEappheation . FEEe E,EIEE“
ltetimeafterusergoes-offhne

.) R&le Server-side OAuth 2.0 clients need to authenticate their sh

Code] interactions with the authorization server, making it impossible fs-or
of-new-tokens L.

token for the attacker to exchange a stolen authorization code.

Trigge The attacker controlling pages in the browser can still send
frontqd requests to the backend, which may result in data exfiltration or
applig the execution of operations.

Proxying requests
via the user's browser

@ pdr.online

By using OAuth 2.0 in frontend applications, the attack surface of
the application increases.

Attackers can impersonate the frontend application,

allowing them to independently act in the name of the user
for the lifetime of the refresh token.

@ pdr.online

Can we have the security of backend

OAuth clients in our frontend applications?

@ pdr.online

Run the Authorization Code flow

without client authentication AUTHORIZATION

SERVER

o Issue access token and refresh token

FRONTEND e Make API requests with access token

API

@ pdr.online

THE CONCEPT OF A BACKEND-FOR-FRONTEND (BFF)

Run the Authorization Code flow

with client authentication 0 AUTHORIZATION

SERVER

— Keep track of tokens e Issue access token and refresh token
with cookies
FRONTEND

Proxy API requests with access token
retrieved from session

¢ pdr.online

FRONTEND

@ pdr.online

THE DETAILS OF A BACKEND-FOR-FRONTEND

e Authentication / client authorization

Follow redirect o

Exchange
authorization code
with client authentication

e Redirect to BFF with code

0 Initialize the authorization code flow
BROWSER

AUTHORIZATION

o Redirect with authorization code
Lookup tokens with session @

Q Login @ APl request
@ Logged in @ API data

>

SERVER

e Identity token, access token, & refresh token

Use information from identity
token to "authenticate" the user

@

@ Request with
access token

@ Response

o

API

BFF

FRONTEND

Calling the BFF
(with cookies)

BFF

~

OAuth 2.0 client

Token management

Session management

U

¥ pdr.online

Proxying API calls translating

o

cookies for tokens /

That sounds great, but doesn't this require

major changes to my existing application?

No changes, except marking the

client as a confidential client
= T Mm Mm Em o Em Em Em ER R R RE R R R R R R R R e e == I
E
l
|
l
l
I _____ 1 _______________ ‘_ - 1 B
Remove all OAuth 2.0 The BFF runs an OAuth The BFF proxies API calls
functionality from the 2.0/0IDC flow as a and replaces cookies
frontend application backend web application with tokens. ‘

¢ pdr.online

No changes, the API still
accepts access tokens

The cookie can be set according to security best practices:
__Host-session=..; Secure; HttpOnly; SameSite=strict

¢ pdr.online

The cookie is used to keep track of the user's
tokens. It can be an (encrypted) object containing
the tokens, or a session identifier pointing to
server-side state

- Emm s e

@ ® Q GitHub - manfredsteyerfyarp-a X =

4

@ pdr.online

CcC & 0

@ github.com/manfredsteyer/yarp-auth-proxy

‘= readme.md

Proof of Concept for an Auth Gateway for SPA

... aka Auth Reverse Proxy ... aka Backend for Frontend (BFF) ... aka Forward Authentication Service ...

Authorization-Server

HTTP-only Cookie / ‘
@ Access-Token

. Id-Token
Refresh-Token

Resource-Server

A

Static Files (SPA)

This gateway shifts the use of security standards such as OAuth2 and Openld Connect to the server side.
This drastically simplifies the implementation of the SPA and makes your solution more secure.

)N

?
o
R
I

https://github.com/manfredsteyer/yarp-auth-proxy

@ pdr.online

® © @ .c oAuthfor Web | Curity Identity X =+

4

C @ [& curity.io/product/token-service/oauth-for-web/

WEBINAR = The Way the Cookie Crumbles: Security after Third Party Cookie Deprecation - Register Now! -

;£ CURITY® Product v Solutions v Resources v Company v Developer v Support v Contact Q_ Search & Login [*] schedule a Demo Start Free Trial

OAUTH FOR WEB

Overview of the Token Handler
Pattern

The Token Handler Pattern proposes a scenario where each web application

implements its OAuth security work via a utility API.

Overview v

% Schedule a Demo Start free trial >

£
[)

Authorization
Server

| OAuth Agent

https://curity.io/resources/learn/token-handler-overview/

@ o @ BFF Security Framework :: Due: X + v

d C ® 0 @ docs.duendesoftware.com/identityserver/v5/bff/ ® (=) v:Q

Home > BFF Security Framework ¥ Edit this page
Duende. Y Pag

preet- BFF Securit
Overview < I: ra m eWO r '< >

Fundamentals

—

Quickstarts The Duende.BFF (Backend for Frontend) security
User Interaction framework packages up guidance and the necessary
components to secure browser-based frontends (e.g.

SPAs or Blazor WASM applications) with ASPNET
Protecting APIs Core backends.

Requesting Tokens

Data Stores and Persistence . . :
aia Steresa S Duende.BFF is part of the |dentityServer Business

Diagnostics Edition or higher. The same license and

HP. | L£L 1

@? pdr.online https://docs.duendesoftware.com/identityserver/v5/bff/

THREATS TO FRONTENDS WITH A BFF

Attack scenario Example Duration of attack

therd Only the BFF has access to the application's tokens, preventing
an attacker executing malicious JS in the browser cannot access

. . - H M
. Conti server-side token storage. —is-entine
tokens or refresh tokens from the il |
ltetimeafterusergoes-offhne
o . R—u—ﬁ-ml The BFF is a server-side OAuth 2.0 client using authentication on kh
Code- its interactions with the authorization server, making it S OF
token impossible for the attacker to impersonate the BFF.

Triggd The attacker controlling the frontend can still impersonate the
frontd legitimate frontend and send requests to the BFF, which will be
applig forward these requests to the APIs.

Proxying requests
via the user's browser

@ pdr.online

The BFF observes all the API requests from a
client, and can perform rate-limiting, anomaly
detection, preventing data extraction, ...

Run the Authorization Code flow
with client authentication AUTHORIZATION

SERVER

Keep track of tokens
with cookies

‘>
®
FRONTEND

a Issue access token and refresh token

Proxy API requests with access token
retrieved from session

A compromised frontend Only endpoints exposed by the BFF
application can still send can be abused. The attacker never
requests through the BFF has unfettered access to the APIs

¢ pdr.online

For sensitive applications, the security benefits of a
BFF far outweigh the costs.

BFFs are often used in banking and
healthcare scenarios, and you should do the same.

@ pdr.online

Workgroup: Web Authorization Protocol A. Parecki

Internet-Draft: Okta
draft-ietf-oauth-browser-based-apps-22 D. Waite
Published: 17 January 2025 Ping Identity
Intended Status: Best Current Practice P. De Ryck
Expires: 21 July 2025 Pragmatic Web Security

OAuth 2.0 for Browser-Based Applications

Abstract

This specification details the threats, attack consequences, security
considerations and best practices that must be taken into account
when developing browser-based applications that use OAuth 2.0.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-browser-based-apps.html

KEY TAKEAWAYS

1 Using OAuth 2.0 directly in the browser increases the attack surface

2 Use a BFF to simplify and optimize the security of your frontends

3 Follow secure coding guidelines to fix XSS in your applications

@ pdr.online

MaStering OAUth 2.0 and -D aIrj\,t:oduction to OAuth 2.0 and OpenlID Connect
OIDC Security (May 2025,

Architecture patterns using OAuth 2.0 and OpenID Connect
» Best practices for securing OAuth 2.0 and OIDC flows

EUR) » Understanding OAuth 2.0 security in frontends
» Breaking OAuth 2.0 security in frontends
Q Live online workshop via Zoom » Securing OAuth 2.0 with the Backend-For-Frontend pattern
® View schedule » Using scopes and permissions in OAuth 2.0
OAuth 2.0 and OpenlD Connect have become cornerstone technologies for most » Securing APIs with OAuth 2.0
modern applications. Unfortunately, these technologies are insanely complex to » Demos and practical examples throughout the day

grasp, making it hard to use them securely.

Day 2
This workshop takes you on a step-by-step journey into the world of OAuth 2.0 y

and OpenlID Connect. We start with understanding best practices for building e Advanced use cases for OAuth 2.0 and OpenID Connect
secure applications with OAuth 2.0 and OIDC. Next, we will level up your OAuth 2.0 . Handling delegation scenarios in modern architectures
security using the latest state-of-the-art security mechanisms.) .)) .

» Security best practices for confidential OAuth 2.0 clients
During this two-day hands-on training, spread out over four half days, we'll explore - - - -
a broad range of OAuth 2.0 and OIDC topics. The outline below illustrates what the * Refiucmg o t°ke_n aUthomy WIFh Resource Indicators
workshop will look like. » Using sender-constrained tokens with mTLS and DPoP

» Securing OAuth 2.0 flows with JAR and PAR

. ' » Advanced attacks and defenses against OAuth 2.0 flows
@>'i *-H:'E' @ » Demos and practical examples throughout the day

E"&i’r;-, Al :

.;:, s B This workshop is here to give you the skills you need to design architectures using

%4‘,& Bl ’fé OAuth 2.0 and OpenlID Connect, to assess the security of your applications, and to
2.8 oo

'. ° enhance them using the latest best practices. In-depth lectures, real-world
¥ demos, fun quizzes, and practical examples will guide you through the
complex landscape of OAuth 2.0 and OpenlID Connect.

24
b
-

!:.

3

Need training or security guidance?
Reach out to discuss how | can help

https://pragmaticwebsecurity.com

