E

SECURING FRONTENDS
WITH TRUSTED TYPES

https://Pragmatic Web Security.com



Philippe De Ryck<img
src="nhone"
onerror="alert('OMG') ">



<hl>
Welcome Philippe De Ryck
<img src="none"
onerror="alert('OMG')">
</hl>



Multiple XSS vulnerabilities in child monitoring
app Canopy ‘could risk location leak’

Jessica Haworth

Pair of unpatched security bugs are ‘just the tip of the iceberg’

https://portswigger.net/daily-swig/multiple-xss-vulnerabilities-in-child-monitoring-app-canopy-could-risk-location-leak

, @PhilippeDeRyck



Facebook pays out $25k bug bounty for chained
DOM-based XSS

Adam Bannister

Researcher awarded five-figure sum for ‘easy to exploit’ bug

’ @PhilippeDeRyck https://portswigger.net/daily-swig/facebook-pays-out-25k-bug-bounty-for-chained-dom-based-xss



Trusted Types has the ability to eradicate

DOM-based XSS in your entire application




| am Dr. Philippe De Ryck

@ e Founder of Pragmatic Web Security
Google Developers
)74 Experts Google Developer Expert

AMBASSADOR Auth0 Ambassador

R o G R A M

Secure

AD
= Application SecAppDev organizer

Development

| help developers with security

Hands-on in-depth security training

@ Advanced online security courses

Security advisory services

https://pragmaticwebsecurity.com



Philippe De Ryck<img
src="nhone"
onerror="alert('OMG') ">



An Angular template to put data into the page

1 <hl> Welcome {{ name }} </hl>

The data seen by the browser

Angular/React/Vue/Ember
apply automatic escaping to
data embedded in templates

1 Philippe De Rycké&lt;img src="none"
2 onerror="alert('OMG')"&gT;

y @PhilippeDeRyck

The browser does not see
HTML code, but simply
renders the HTML tags




2e greatest things you learn from traveling

the great things on earth traveling teaches us by example. Here are some of the mc
.ous lessons I've learned over the years of traveling.

Leaving your comfort zone might lead you to such beautiful sceneries like this one.

\ppreciation of diversity

*ting used to an entirely different culture can be challenging. While it's also nice to learn abc
es online or from books, nothing comes close to experiencing cultural diversity in perso
*n to appreciate each and every single one of the differences while you become me

“luid.



DANGEROUSLYSETINNERHTML

Application

Browser

DANGEROUS SINKS
(INNERHTML, ...

2e greatest things you learn from traveling

the great things on earth traveling teaches us by example. Here are some of the mc
ous lessons I've learned over the years of traveling.

HTML PARSER

Leaving your comfort zone might lead you to such beautiful sceneries like this one.

\ppreciation of diversity
“ting used to an entirely different culture can be challenging. While it's also nice to learn abc
~es online or from books, nothing comes close to experiencing cultural diversity in perse

, @ P h i I i p pe D e Ryc k *n to appreciate each and every single one of the differences while you become me
“luid.



Philippe De Ryck

<img src="none"
onerror="alert('OMG')">

MALICIOUS CODE
EXECUTION

| ‘l‘ Application

Browser

DANGEROUSLYSETINNERHTML

INNERHTML

!

LOAD IMAGE AND
TRIGGER ERROR

HTML PARSER

, @PhilippeDeRyck



escaping / sanitization

Application

Browser

DANGEROUS SINKS
(INNERHTML, ...)

!

HTML PARSER

’ @PhilippeDeRyck



A JSX template to render user-provided HTML with a major vulnerability

return ( <div>
<h3>{ title }</h3> e

1
2
3 <p dangerouslySetInnerHTML={{__html: review}}></p>
4

</div>);

A JSX template to render user-provided HTML using DOMPurify

This property is dangerous,
since React does not apply
any protection at all

import DOMPurify from ‘dompurify’;

return ( <div>

<p dangerouslySetInnerHTML={{__html: DOMPurify.sanitize(review)}}></p>

1
2
3
4 <h3>{ title }</h3>
5
6

</div>);

, @PhilippeDeRyck

DOMPurify turns untrusted
HTML in safe HTML, making it
safe to include in the page




An Angular template to render user-provided HTML

1 <div>

2 <h3>{{ review.title }}</h3>

3 <p [innerHTML]="review.content">:/p>
4 </div>

[innerHTML] does not directly
expose innerHTML property,

but sanitizes the data first

, @PhilippeDeRyck




MALICIOUS CODE
escaping / sanitization EXECUTION

I Application

Browser

DANGEROUS SINKS
(INNERHTML, ...)

!

PICKS UP
HTML PARSER
THE JS CODE

, @PhilippeDeRyck



Signal Messenger

:i @@ -111,7 +113,9 @@ export class Quote extends React.Component<Props, {}> {
if (text) { if (text) {
return ( return (
114 - <div className="text" dangerouslySetInnerHTML={{ 116 + <div className="text">
__html: text }} />
N <MessageBody text={text} />
118 + </div>
); );
} 15
pI L

, @PhilippeDeRyck https://github.com/signalapp/Signal-Desktop/commit/4e5c8965ff72576a9e20850dd30d9985f4073192#diff-8bba204372da85d8cceed81278b7eec



function App() {
const messageBoxRef = React.createRef(); e

useEffect(() => {
let messages = "...";

Creates a direct reference
to a node in the DOM

messageBoxRef.current.innerHTML += messages; ®

)

return (<div ref={messageBoxRef}>No new messages</div>);

}

y @PhilippeDeRyck

Insecure direct DOM
manipulation creates XSS
vulnerabilities




@ViewChild("myDiv'") div : ElementRef;

this.div.nativeElement.innerHTML = this.inputValue;

With ElementRef, you can access native
DOM elements, where Angular cannot
apply automatic protection against XSS

’ @PhilippeDeRyck



Frontend frameworks make it harder to cause
XSS vulnerabilities, but a single mistake can still
compromise the security of the application

y @PhilippeDeRyck



Enable trusted types by setting a CSP policy

1 Content-Security-Policy:
2 require-trusted-types—-for ‘'script’

APPLICATION CODE

Application

%Bmw
TRUSTED TYPES

(INNERHTML, ...)

® »Uncaught TypeError: Failed to set the index.js:1
‘innerHTML' property on 'Element': This document
requires 'TrustedHTML' assignment.
at HTMLIFrameElement.e.onload (index.js:1)
at fe (index.js:1)
HTML PARSER at index.js:1

at index.js:1

’ @PhilippeDeRyck



Trusted Types complement static analysis by providing runtime guarantees about the
absence of uncontrolled data flows in client-side code. Our analysis of the vulnerabilities

reported to Google VRP shows that Trusted Types could effectively prevent at least
61% of DOM XSS-es missed by our static analysis pipeline.

’ @PhilippeDeRyck https.//docs.google.com/document/d/1m91JZWKAGOR3jQoicMVE9Ydcq79gM2BetcRIBemrex8/view#



Enable trusted types by setting a CSP policy

1 Content-Security-Policy: require-trusted-types—for 'script'’

I

Tells the browser to only allow
trusted types in the DOM

Trusted Types does not affect the use of proper DOM APIs

let msg = document.createElement("span");
msg.setAttribute("class", "italic");
msg.textContent = e.data;
document.getElementById("msg").appendChild(msg);

~ W N -

!

When possible, always opt to write
clean code instead of relying on the
browser's HTML parser

’ @PhilippeDeRyck



2e greatest things you learn from traveling

the great things on earth traveling teaches us by example. Here are some of the mc
.ous lessons I've learned over the years of traveling.

Leaving your comfort zone might lead you to such beautiful sceneries like this one.

\ppreciation of diversity

*ting used to an entirely different culture can be challenging. While it's also nice to learn abc
es online or from books, nothing comes close to experiencing cultural diversity in perso
*n to appreciate each and every single one of the differences while you become me

“luid.



Enable trusted types by setting a CSP policy

1 Content-Security-Policy: require-trusted-types—for 'script'’

I

Tells the browser to only allow
trusted types in the DOM

DOMPurify can generate Trusted Types when sanitizing

1 <p dangerouslySetInnerHTML={{__htm1l:
2 DOMPurify.sanitize(review, {RETURN_TRUSTED_TYPE: true})}}></p>

!

DOMPurify can return a trusted type, which is
allowed to be assigned to innerHTML

’ @PhilippeDeRyck



Enforcing Trusted Types

We recommend the use of Trusted Types (4 as a way to help secure your applications from cross-site scripting
attacks. Trusted Types is a web platform [Z feature that can help you prevent cross-site scripting attacks by

enforcing safer coding practices. Trusted Types can also help simplify the auditing of application code.

Trusted Types might not yet be available in all browsers your application targets. In the case your Trusted-Types-enabled
application runs in a browser that doesn't support Trusted Types, the functionality of the application will be preserved, and
your application will be guarded against XSS via Angular's DomSanitizer. See caniuse.com/trusted-types (2 for the

current browser support.

To enforce Trusted Types for your application, you must configure your application's web server to emit HTTP

headers with one of the following Angular policies:

e angular -This policy is used in security-reviewed code that is internal to Angular, and is required for
Angular to function when Trusted Types are enforced. Any inline template values or content sanitized by
Angular is treated as safe by this policy.

e angular#unsafe-bypass - This policy is used for applications that use any of the methods in Angular's
DomSanitizer that bypass security, such as bypassSecurityTrustHtml . Any application that uses these
methods must enable this policy.

e angular#unsafe-jit - This policy is used by the JIT compiler. You must enable this policy if your
application interacts directly with the JIT compiler or is running in JIT mode using the platform browser

dynamic.

’ @PhilippeDeRyck https://angular.io/quide/security#enforcing-trusted-types



Enable trusted types by setting a CSP policy

1 Content-Security-Policy: require-trusted-types—-for 'script';
2 trusted-types angular

I

Tells the browser to enable
Trusted Types and allow values
returned by the Angular policy

Angular's sanitizer automatically generates Trusted Types

1 <p [innerHTML]="review.content"></p>

!

Angular automatically returns a trusted type,
making it compatible with TT out of the box

’ @PhilippeDeRyck



TT forces you to transform text to a Trusted

Type, it does not automatically apply security




Enabling Trusted Types modifies default browser
behavior, refusing the insecure usage of
dangerous sinks in the DOM

y @PhilippeDeRyck



Usage % of all users s ?

Trusted Types for DOM
. . Global 70.18%
manipulation
B - UNOFF
An API that forces developers to be very explicit
about their use of powerful DOM-injection APIs. Can
greatly improve security against XSS attacks.
Usage relative Date relative Filtered Wl o 2
* . * * . g *
IE Edge Firefox Chrome Safari Opera Sa%nson Opera Mini Qp:v:(s)'ec: aggaae

10-68
69-82

4-81
83-97 |3.1-15.1
1'a.3 83

12-81
83-97

3.2-15.1 2.1-44.4412-12.1

2-96

6-10

15.4

97

98-99 | 99-101 | 15.4-TP

Source: caniuse.com



Enable trusted types by setting a CSP policy

1 Content-Security-Policy: require-trusted-types—for 'script'’

With trusted ty e browser refuses to assign text to innerHTML

1 this.div.na ent.innerHTML = this.inputValue;

Fixing the application for Chrome typically results in applying proper protections

1 <div [innerHTML]="inputValue"></div>

, @PhilippeDeRyck



Enable trusted types by setting a CSP policy

1 = ] = ] . 1 — ! : 1

Thanks to trusted types, the application follows security best practices

1 <div [innerHTML]="inputValue"></div>

|

Enabling Trusted Types automatically
results in better coding practices, even

when only used in development

y @PhilippeDeRyck



Trusted Types polyfills are available

for non-supporting browsers




Having Trusted Types point out unsafe
assignments to the DOM helps fixing these issues
in the application's code, benefiting all users

y @PhilippeDeRyck



escaping / sanitization

DANGEROUS SINKS
(INNERHTML, ...)

HTML PARSER

’ @PhilippeDeRyck

THIRD-PARTY CODE
DEPENDENCIES

Application

Browser



escaping / sanitization

DANGEROUS SINKS
(INNERHTML, ...)

HTML PARSER

’ @PhilippeDeRyck

THIRD-PARTY CODE
DEPENDENCIES

Application

Browser



THIRD-PARTY CODE
DEPENDENCIES

escaping / sanitization

Application

Browser

TRUSTED TYPES
(INNERHTML, ...)

® »Uncaught TypeError: Failed to set the index.js:1
‘innerHTML' property on 'Element': This document
requires 'TrustedHTML' assignment.
at HTMLIFrameElement.e.onload (index.js:1)
at fe (index.js:1)
HTML PARSER at index.js:1

at index.js:1

’ @PhilippeDeRyck



Enable trusted types by setting a CSP policy

1 Content-Security-Policy: require-trusted-types-for 'script'

Specify a default TT policy that is applied on all text assigned to HTML sinks

1 <script

2 src="https://cdnjs.cloudflare.com/ajax/libs/dompurify/2.2.4/purify.min.js"></script>
3 <script>

4 //Define a default policy

5 trustedTypes.createPolicy('default', {

6 createHTML: (string, sink) =>

7 DOMPurify.sanitize(string)

8 }); *

9 </script>

Defining a default policy automatically
applies the createHTML function on
string-based assignments to innerHTML,
which fixes the application




A default Trusted Types policy requires

browser support or the loading of the polyfill




Trusted Types prevents that third-party code or
dependencies from using dangerous sinks, and a
default policy can automatically enable protection

y @PhilippeDeRyck



®C® 5 preventpOM -based cross-s it X+ [~

¢« C O @ web.dev/trusted-types/ h o OR W

Z. web.dev Learn Measure Blog About Q_ Search SIGN IN

Prevent DOM-based cross-site scripting
vulnerabilities with Trusted Types

Reduce the DOM XSS attack surface of your application.
Mar 25, 2020
Appears in: Safe and secure

Why should you care?

, @PhilippeDeRyck https://web.dev/trusted-types/



Want more in-depth security content?

< G O & cour i it urity Q h * O® w i

Pragmatlc web Secunty SIGN IN GET STARTED NOW

SIGN IN GET STARTED NOW

Cutting-edge React
securit

© 00 i anisecuriy

Mastering OAuth 2.0 and OpenlID

Connect

Pragmatic Web Security -
@ - Your shortcut towards understanding OAuth 2.0 and
OpenID Connect

« C 0 @ cour

OAuth 2.0 and OpenlID Connect are crucial for securing web applications, mobile
applications, APIs, and microservices. Unfortunately, getting a good grip on the purpose
and use cases for these technologies is insanely difficult. As a result, many

A P | SeC u rlty b e St 7, . . irrnplementations use incorrect configurations or contain security vulnerabilities.
practices > -

Building secure APIs is not only about secure coding, but also
about selecting the right approach for your specific scenario.
This course covers both the trade-offs between security
mechanisms and the practical guidelines to build secure APIs.

HTTPS://COURSES.PRAGMATICWEBSECURITY.COM



Thank youl!

Always happy to connect
on social media

@PhilippeDeRyck /in/PhilippeDeRyck



