
https://Pragmatic Web Security.com

DR. PHILIPPE DE RYCK

SERVING THE RIGHT RECIPE
FOR USER AUTHENTICATION

@PhilippeDeRyck 2

1 Authenticate with credentials

3 Response with authenticated state

2 Verify the user's
authentication credentials4 Request with authenticated state

5 Make authorization
decision based on state

6 Response

State propagation can be achieved
with sessions, tokens, or other

approaches

@PhilippeDeRyck 3

1 Authenticate with credentials

3 Response with authenticated state

2 Verify the user's
authentication credentials4 Request with authenticated state

5 Make authorization
decision based on state

6 Response

@PhilippeDeRyck 4

@PhilippeDeRyck

I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

Auth0 Ambassador / Expert

SecAppDev organizer

https://pragmaticwebsecurity.com

I help developers with security

Academic-level security training

Hands-on in-depth online courses

Security advisory services

@PhilippeDeRyck 7

1 Send username and password

3 Response

PAS
SW

ORD HAS
HED

PAS
SW

ORD

2Verify the password
against the stored hash

@PhilippeDeRyck

• The password is a shared secret

between the user and the backend

• Easy to understand and use

• Difficult to handle passwords securely

8

BENEFITS DRAWBACKS
Lightweight mechanism with minimal overhead

Conceptually easy to understand

Easily portable across devices

Passwords are re-used across applications

Passwords are vulnerable to phishing

Passwords can be stolen or brute forced

PASSWORD-BASED AUTHENTICATION

@PhilippeDeRyck 9

1 I'm Philippe and I want to login

3 Send the magic link via email / SMS

2Generate a magic link
with a one-time token4 Open magic link

5Verify the token in the magic link

6 Response

To increase security, the
backend can require that

step 1 and 4 happen in the
same browser

The token contents can be
arbitrary, but the Decentralized
ID (DID) specification offers an

interesting format

The security of this
mechanism relies on
access to the user's

email / SMS messages

@PhilippeDeRyck

• No passwords or shared secrets

• Easy to understand and use

• Moves the responsibility of

authentication to someone else

10

BENEFITS DRAWBACKS
Conceptually easy to understand

Portable and less susceptible to phishing

Not worse than traditional "reset password" features

Implicit authentication through email / SMS access

Email and SMS have their own security issues

Reliance on third-party for a crucial security feature

AUTHENTICATING WITH MAGIC LINKS

@PhilippeDeRyck 11

2 Authenticate by sending the signature

4 Response

3Verify the signature
using the public key

PRIVATE
PUBLIC

1Generate a signature
using the private key

The signature acts as a proof-of-
possession mechanism,

demonstrating that the user has
access to the private key

@PhilippeDeRyck

INTERMEZZO: DIGITAL SIGNATURES

12

Data to sign … e06b5924…5d672d79c15b1Data to sign … e06b5924…5d672d79c15b1

PRI
VAT

E

The data to protect
with the signature

A cryptographic
signing function

(e.g. RSA)

The signature
calculated on the data

with the private key

A private key belonging
to this particular user

@PhilippeDeRyck

INTERMEZZO: DIGITAL SIGNATURES

13

Data to sign … e06b5924…5d672d79c15b1

Data to sign …

e06b5924…5d672d79c15b1 The data is the same and the
signature is created with the

expected private key

The data is different
or the wrong signing

key has been used

PRI
VAT

E

PUB
LIC The public key is uniquely

linked to the private key

@PhilippeDeRyck 14

1 Establish a mutual TLS (mTLS) connection

PRIVATE

PUBLIC

Verify that the server
certificate is trusted

Verify that the user
certificate is trusted

A communication channel
providing confidentiality,
integrity, and authenticity

PRIVATE

PUBLIC Backend public
key/cert

User public
key/cert

User private
key

Backend private
key

@PhilippeDeRyck 15https://textslashplain.com/2020/05/04/client-certificate-authentication/

@PhilippeDeRyck 16

1 I am Philippe and I want to login

7 Response

2Lookup account details
and generate challenge

PRIVATE

PUBLIC

4Sign a challenge
using the private key

3
Send push notification

with challenge

5 Signed challenge

6Verify the signature
with the public key

The signing step typically asks
the user to review the

authentication and to unlock the
key with a PIN or biometrics

@PhilippeDeRyck

• No shared secrets, but an asymmetric key

pair with a public and private part

• Authentication comes down to proving

possession of the private key

17

BENEFITS DRAWBACKS
Only the public key needs to be shared (no secrets)

Many OSes offer secure storage for crypto keys

Works really well for native mobile applications

Requires a client-side mechanism to handle keys

Implementing a custom key-based scheme is challenging

Not a scalable approach for web applications

KEY-BASED AUTHENTICATION

@PhilippeDeRyck 18

2 Authenticate by sending the signature

4 Response

3Verify the signature
using the public key

PRIVATE
PUBLIC

1Generate a signature
using the private key

Browser support for
authenticators through

WebAuthn

@PhilippeDeRyck 19

1 I am Philippe and I want to register

2 Create a key and sign this challenge

PRIVATE

PUBLIC

3
Ask authenticator to

create key and sign
challenge

4 Create the key pair and sign the
challenge with the private key

5 Public key and signed challenge

6 Public key and signed challenge 7
Verify the challenge, and
store the public key and the
credential ID for this user

During registation, a new
key pair is generated on the

authenticator

To prevent phishing, the
browser automatically sends
the origin of the requesting
page to the authenticator

@PhilippeDeRyck 20

@PhilippeDeRyck 21

The code to create a new credential from the browser

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

navigator.credentials.create({ publicKey: {
// The relying party (server)
rp: { name: "Restograde",

id: "restograde.com"
},

// User-specific properties, including a unique ID
user: { id: Uint8Array.from("ABCD1234", c => c.charCodeAt(0)),

name: "philippe@pragmaticwebsecurity.com",
displayName: "Philippe De Ryck"

},

//-7 refers to Elliptic Curve pubkeys with SHA-256 signatures
pubKeyCredParams: [{ type: "public-key", alg: -7 }],

authenticatorSelection: { authenticatorAttachment: "cross-platform" },
attestation: "direct",
timeout: 60000,
challenge: ... // A cryptographically random challenge from the server

}}).then(…)

@PhilippeDeRyck 22

1 I am Philippe and I want to login

3 Sign this challenge with one of these keys

2Lookup user and
retrieve credential IDs

PRIVATE

PUBLIC

4
Ask authenticator to sign
challenge with any of the

requested keys

5 Sign the challenge

6 Signed challenge

7 Signed challenge

To prevent phishing, the browser
automatically sends the origin of the

requesting page to the authenticator. An
unexpected origin value results in an error.

During authentication, a
challenge is signed by the

key from the authenticator

8
Verify the challenge with the
stored public key and
authenticate the user

@PhilippeDeRyck 23

@PhilippeDeRyck 24

The code to authenticate a user with a credential from the browser

1
2
3
4
5
6
7
8
9
10
11
12

const assertion = await navigator.credentials.get({
publicKey: {
challenge: Uint8Array.from(
randomStringFromServer, c => c.charCodeAt(0)),
allowCredentials: [{
id: Uint8Array.from(credentialId, c => c.charCodeAt(0)),
type: 'public-key',
transports: ['usb', 'ble', 'nfc'],

}],
timeout: 60000,

}
});

? What about account recovery?

Without a remaining authenticator, users can be locked out

Automatic recovery is possible, but likely represents a weakness (e.g., email access, phone number)

Recovery from a trusted machine or existing installation (e.g., mobile app) has better security properties

Enterprise applications can typically rely on technical support to handle account recovery

WebAuthn is a good candidate to replace passwords

Highly recommended to offer technical users the option to use WebAuthn

To avoid recovery issues, consider combining WebAuthn with passwords + MFA

When sufficient authenticators are registered, allow the user to disable traditional authentication

@PhilippeDeRyck

• Offers strong cryptographic authentication

• Widely supported in modern browsers

• Supports hardware authenticators

• Flexible API and streamlined UX

27

BENEFITS DRAWBACKS
Widely supported strong key-based authentication

Enables hardware keys as primary authenticator

Built-in privacy and phishing protection

New mechanism and workflow for most users

Only a full password replacement in controlled environments

Server-side handling of signatures is very sensitive

RELYING ON WEBAUTHN

Login with Restograde

@PhilippeDeRyck 29

6 Redirect to the application with
an identity token

3Start an OpenID Connect
flow to authenticate

1 I want to login

2 Redirect to the identity provider

8 Use token information
for authentication

4 Request user authentication

5Authenticate to the
identity provider

7 Redirect with an identity token

OIDC supports central
authentication to different

applications, including single
sign-on

@PhilippeDeRyck

The encoded identity token

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6Ik5U
VkJPVFUzTXpCQk9FVXdOemhCUTBWR01rUTBRVVU1UVRZeFFV
VXlPVU5FUVVVeE5qRXlNdyJ9.eyJuaWNrbmFtZSI6InBoaWx
pcHBlIiwibmFtZSI6InBoaWxpcHBlQHByYWdtYXRpY3dlYnN
lY3VyaXR5LmNvbSIsInBpY3R1cmUiOiJodHRwczovL3MuZ3J
hdmF0YXIuY29tL2F2YXRhci9mNDBkNjRhNGIxNjc4OTUwODA
2MmU2NjRiZTZhZTU3NT9zPTQ4MCZyPXBnJmQ9aHR0cHMlM0E
lMkYlMkZjZG4uYXV0aDAuY29tJTJGYXZhdGFycyUyRnBoLnB
uZyIsInVwZGF0ZWRfYXQiOiIyMDIwLTA2LTA5VDA0OjE4OjA
0LjkwM1oiLCJlbWFpbCI6InBoaWxpcHBlQHByYWdtYXRpY3d
lYnNlY3VyaXR5LmNvbSIsImVtYWlsX3ZlcmlmaWVkIjp0cnV
lLCJpc3MiOiJodHRwczovL3N0cy5yZXN0b2dyYWRlLmNvbS8
iLCJzdWIiOiJhdXRoMHw1ZWI5MTZjMjU4YmRiNTBiZjIwMzY
2YzYiLCJhdWQiOiJGTjk4M0NFWWd4NG1kVWczTktOS0hqd2Z
OQUw1RmI0MiIsImlhdCI6MTU5MTY3NjI5MCwiZXhwIjoxNTk
xNzEyMjkwfQ.m60Br25jY8MOwIpCAjv3tRYF7IMR11ydzaP1
m6qJwsX74Sr5WUh49IK3iwaK72U6r2KXAp3_Oys9aabdoSc6
EkiYo7sho2W_fbLrUz8ocHFcTdHemuM0zoDQ6lVgobDNiwtl
eht8iNnIf9ghlRa-
TBtuL0TIRxkSHsCuJHKlWEG7zVHwll1q34XcLtkq4mnjWKlM
P5dNZoqIB_0Gek-EG05nUuoYwK7IqaZIGFLgc4EaK0fel-
MIqqDAwiD3etAkILSu7Phejk6zHwuEQlt3YzlbP5ZHNPK5hn
Sph80BPL7VMdDUWhjMdl1eW21cRq5CQNIKAJDbVLDdWqemO9
Kp_A

The decoded JWT payload

1
2
3
4
5
6
7
8
9
10
11
12
13

{
"nickname": "philippe",
"name": "philippe@pragmaticwebsecurity.com",
"picture": "https://s.gravatar.com/....png",
"updated_at": "2020-06-09T04:18:04.903Z",
"email": "philippe@pragmaticwebsecurity.com",
"email_verified": true,
"iss": "https://sts.restograde.com/",
"sub": "auth0|5eb916c258bdb50bf20366c6",
"aud": "FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42",
"iat": 1591676290,
"exp": 1591712290

}

@PhilippeDeRyck

The decoded JWT payload

1
2
3
4
5
6
7
8
9
10
11
12
13

{
"nickname": "philippe",
"name": "philippe@pragmaticwebsecurity.com",
"picture": "https://s.gravatar.com/....png",
"updated_at": "2020-06-09T04:18:04.903Z",
"email": "philippe@pragmaticwebsecurity.com",
"email_verified": true,
"iss": "https://sts.restograde.com/",
"sub": "auth0|5eb916c258bdb50bf20366c6",
"aud": "FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42",
"iat": 1591676290,
"exp": 1591712290

}

User account information from Restograde

The issuer of the identity token (STS)

The audience of the identity token (client)
The user's unique ID within the STS

@PhilippeDeRyck 32

6 Redirect to the application with
an identity token

3Start an OpenID Connect
flow to authenticate

1 I want to login

2 Redirect to the identity provider

8 Use token information
for authentication

4 Request user authentication

5Authenticate to the
identity provider

7 Redirect with an identity token

Step 4 and 5 still rely on
"traditional authentication",

using passwords or key-based
solutions

@PhilippeDeRyck

• Offloads authentication to a central service

• Reduces the application's responsibilities

• Enables tighter security

• Supports Single Sign-On (SSO)

33

BENEFITS DRAWBACKS
Supports multiple clients with a single user account

Centralized security controls give more control

Works well with an (enterprise) application portfolio

No replacement for user authentication

Requires an identity provider (self-hosted/as a service)

OIDC is complex to understand and tricky to get right

USING OPENID CONNECT

@PhilippeDeRyck

This online course condenses dozens of confusing specs
into a crystal-clear academic-level learning experience

https://courses.pragmaticwebsecurity.com

25% discount

Offer expires November 11th, 2020

LOCOMOCOSEC

Use coupon code

@PhilippeDeRyck 35

Password-based authentication Well-known but vulnerable mechanism, which
should be avoided when possible

Authenticating with magic links Simple authentication without user secrets for
non-sensitive applications

Key-based authentication Strong authentication mechanism, but can be
difficult to manage for web applications

Relying on WebAuthn Strong authentication mechanism, highly
recommended for web applications

Using OpenID Connect Recommended to offload authentication to a
dedicated service with tight security controls

@PhilippeDeRyck

OWASP ASVS DEFINES DETAILED AUTHENTICATION REQUIREMENTS

36

@PhilippeDeRyck

USEFUL REFERENCES

• A primer on Decentralized IDs: https://w3c-ccg.github.io/did-primer/

• A guide on mTLS: https://textslashplain.com/2020/05/04/client-certificate-authentication/

• FIDO2 & WebAuthn: https://fidoalliance.org/fido2/

• WebAuthn implementation guide: https://webauthn.guide/

• OIDC explained: https://connect2id.com/learn/openid-connect

• OWASP ASVS: https://owasp.org/www-project-application-security-verification-standard/

• Additional talks on application security: https://pragmaticwebsecurity.com/talks.html

• Online courses: https://pragmaticwebsecurity.com/courses.html

37

https://w3c-ccg.github.io/did-primer/
https://textslashplain.com/2020/05/04/client-certificate-authentication/
https://fidoalliance.org/fido2/
https://webauthn.guide/
https://connect2id.com/learn/openid-connect
https://owasp.org/www-project-application-security-verification-standard/
https://pragmaticwebsecurity.com/talks.html
https://pragmaticwebsecurity.com/courses.html

Thank you for watching!
Connect on social media for more

in-depth security content

@PhilippeDeRyck /in/PhilippeDeRyck

