
@PhilippeDeRyck – philippe@PragmaticWebSecurity.comPHILIPPE DE RYCK

COOKIES VS TOKENS: A PARADOXICAL CHOICE



@PhilippeDeRyck 2

SHOULD YOU EVER USE
COOKIES FOR YOUR API?



@PhilippeDeRyck 3

Authentication

Authorization

Session management



@PhilippeDeRyck

• Founder of Pragmatic Web Security
• In-depth web security training for developers
• Covering web security, API security & Angular security

• 15+ years of security experience
• Web security instructor and conference speaker
• Author of Primer on client-side web security
• Creator of Web Security Fundamentals on edX

• Course curator of the SecAppDev course
• Yearly security course targeted towards developers
• More information on https://secappdev.org

• Foodie and professional chef
GOOGLE DEVELOPER EXPERT

PH.D. IN WEB SECURITY

HTTPS://PRAGMATICWEBSECURITY.COM

DR. PHILIPPE DE RYCK



@PhilippeDeRyck 5

Works fine with 
a stateful REST

backend



@PhilippeDeRyck 6

Works fine with 
a stateful REST

backend

Might benefit 
from a stateless 
REST backend



@PhilippeDeRyck

THE TRUTH IS A LOT MORE COMPLICATED

• Pure REST APIs should be stateless

• The server is stateless, and the client provides all the required information

• A valid argument for stateless backends is flexible scalability

• Purity is rarely a good argument to throw working solutions overboard

• An API can just as well keep session state on the server

• Works perfectly well with small to medium-scale applications

• Makes scalability harder, but not impossible

• We have been doing this for 20 years with sticky sessions, session replication, ...

• OAuth 2.0 is commonly used in both a stateful and stateless manner

• The debate on reference tokens vs self-contained tokens is essentially the same issue

7



@PhilippeDeRyck 8

SESSION DATA REPRESENTATION AND LOCALITY

How will you represent session data?
Do you keep the data on the client or the server?



@PhilippeDeRyck 9

21 3 4



@PhilippeDeRyck 10

2

1

3 4



@PhilippeDeRyck

THE LOCALITY OF SESSION DATA IMPACTS SECURITY

• Server-side sessions share an ID with the client and store data on the server
• Attacks on session management focus on guessing or stealing the ID
• The data stored in the server-side session object can be considered trusted

• Client-side sessions are a completely different paradigm
• The actual data is stored on the client, so it can be easily accessed
• The data comes in from the client, and is untrusted by default

• Client-side sessions require additional data protection measures
• Mandatory integrity checks to detect tampering with the data
• Optional confidentiality mechanisms to prevent disclosure of information

11



@PhilippeDeRyck 12



@PhilippeDeRyck 13

CAN YOU SPOT
A PROBLEM HERE?

String token = "eyJhbGciOiJIUzI1NiIsInR5c...zWfOkEE";
try {

DecodedJWT jwt = JWT.decode(token);
} catch (JWTDecodeException exception){

//Invalid token
}

1
2
3
4
5
6



@PhilippeDeRyck 14

String token = "eyJhbGciOiJIUzI1NiIsInR5c...zWfOkEE";
try {

DecodedJWT jwt = JWT.decode(token);
} catch (JWTDecodeException exception){

//Invalid token
}

1
2
3
4
5
6

String token = "eyJhbGciOiJIUzI1NiIsInR5c...zWfOkEE";
try {

Algorithm algorithm = Algorithm.HMAC256("secret");
JWTVerifier verifier = JWT.require(algorithm)

.build(); //Reusable verifier instance
DecodedJWT jwt = verifier.verify(token);

} catch (JWTVerificationException exception){
//Invalid signature/claims

}

1
2
3
4
5
6
7
8
9

Decoding only

Signature verification



@PhilippeDeRyck 15



@PhilippeDeRyck

HMAC-BASED JWT SIGNATURES

16

data yxzN...sFno=

yxzN...sFno=

GENERATE HMAC

VERIFY HMAC

yxzN...sFno=

HMAC

SECRET KEY

data

data

Message is the 
same as the one 
that was signed

Message differs 
from the one 

that was signed



@PhilippeDeRyck

ASYMMETRIC JWT SIGNATURES

17

payload yxzN...sFno=

GENERATE SIGNATURE

VERIFY SIGNATURE

SIGNATURE

PRIVATE KEY

Message is the 
same as the one 
that was signed

Message differs 
from the one 

that was signed

PUBLIC KEY

C171...dfb

yxzN...sFno=

payload C171...dfb

C171...dfb



@PhilippeDeRyck

JWT SIGNATURES

• JWTs support both symmetric and asymmetric signatures
• Symmetric signatures are HMACs that depend on a shared secret key
• Asymmetric are digital signatures that depend on a public/private key pair

• Symmetric signatures are useful to use within a single trust zone
• Backend service storing claims in a JWT for use within the application
• Symmetric signatures are not the right choice when other (internal) services are involved

• Never ever share your secret signing key!

• Asymmetric signatures are useful in distributed scenarios
• SSO or OAuth 2.0 scenarios using JWTs to transfer claims to other services
• Everyone with the public key can verify the signature
• Used in OpenID Connect (e.g., social login scenarios)

18



@PhilippeDeRyck 19

SESSION DATA STORAGE

Where do you store your session data in the browser?



“ “The browser offers a storage that can’t be read by JavaScript: 
HttpOnly cookies. It’s a good way to identify a requester 

without risking XSS attacks.



@PhilippeDeRyck 21
HttpOnly cookies



@PhilippeDeRyck

THE DEAL WITH HTTPONLY

• The HttpOnly flag resolves a consequence of an XSS attack
• Stealing the session identifier becomes a lot harder
• But you still have an XSS vulnerability in your application

• XSS allows the attacker to execute arbitrary code
• That code can trigger authenticated requests, modify the DOM, ...

• HttpOnly is still recommended, because it raises the bar
• XSS attacks become a little bit harder to execute and to persist
• XSS attacks from subdomains become less powerful (with domain-based cookies)

• In Chrome, HttpOnly prevents cookies from entering the rendering process
• Useful to reduce the impact of CPU-based Spectre and Meltdown attacks

22



@PhilippeDeRyck 23



@PhilippeDeRyck

COMPARING CLIENT-SIDE STORAGE MECHANISMS

24

Available to the 
entire origin

LOCALSTORAGE SESSIONSTORAGE IN-MEMORY COOKIES

Survives a page 
reload

Cannot be shielded 
from malicious code

Application code 
required for handling

Available to the 
window and children

Survives a page 
reload

Can be a bit shielded 
from malicious code

Application code 
required for handling

Available to running 
code only

Does not survive a 
page reload

Can be shielded from 
malicious code

Application code 
required for handling

Can be fully hidden 
from JavaScript

Survives a page 
reload

Can be shielded from 
malicious code

Application code not 
required for handling



@PhilippeDeRyck 25

SESSION DATA TRANSPORT

How will you send session data to the server?



@PhilippeDeRyck 26

Cookie: ID=42

Cookie: JWT=eyJhbGci…

Authorization: Bearer 42

Authorization: Bearer eyJhbGci…



@PhilippeDeRyck 27

WHICH OF THESE IS THE BEST PRACTICE
FOR ISOLATED APPLICATIONS?
A. Session=...; Secure; HttpOnly

B. __Secure-Session=...; Secure; HttpOnly

C. __Host-Session=...; Secure; HttpOnly

D. __Host-Session=...; Secure; HttpOnly; SameSite

E. __Host-Session=...; Secure; HttpOnly; SameSite; LockOrigin



@PhilippeDeRyck

RECOMMENDATIONS FOR SECURE COOKIES

• Since everything runs over HTTPS, cookies can be locked down
• Set the Secure flag on all cookies
• Add the _ _ Secure- prefix to all cookies

• Most cookies do not need to be accessed from JavaScript
• Set the HttpOnly flag on those cookies

• Most cookies are set and used by one application only
• Do not set the Domain attribute on cookies
• Replace the _ _ Secure- prefix with the _ _ Host- prefix

28



@PhilippeDeRyck 29

Load unrelated page

Legitimate 
requests within 
the application

Restograde
context

Maliciousfood
context Forged requests



@PhilippeDeRyck

DEFENDING AGAINST CSRF ATTACKS

• To defend against CSRF, the application must identify forged requests
• By design, there is no way to identify if a request came from a malicious context
• The Referer header may help, but is not always present

• Common CSRF defenses add a secret token to legitimate requests
• Only legitimate contexts have the token
• Attackers can still make requests with cookies, but not with the secret token

• Recently, additional client-side security mechanisms have been introduced
• The Origin header tells the server where a request is coming from
• The SameSite cookie flag prevents the use of cookies on forged requests

30



@PhilippeDeRyck

OVERVIEW OF CSRF DEFENSES

• Hidden form tokens (synchronizer tokens)
• Requires server-side storage of CSRF tokens, which may be resource-intensive

• Double submit cookies (transparent tokens)
• Stateless CSRF defense mechanism
• Extremely compatible with client-side JavaScript applications (e.g. AngularJS)

• Checking the origin header
• Useful when other context information is missing
• Plays an important role when accessing APIs with Cross-Origin Resource Sharing (CORS)
• Practical defense during the setup of a WebSocket connection

• SameSite cookies
• Addresses the root of the problem, but browser support is still limited

31



“ “
Angular's HttpClient has built-in support for 

[the double submit cookie pattern]



@PhilippeDeRyck 33

!



@PhilippeDeRyck 34



@PhilippeDeRyck 35

CAN YOU SPOT THE
SECURITY ISSUE HERE?



@PhilippeDeRyck 36



@PhilippeDeRyck

SECURITY CONSIDERATIONS WITH CUSTOM TRANSPORT MECHANISMS

• Implementing a custom transport mechanism has security implications
• All of a sudden, developers need to implement code to attach session data to requests
• Angular interceptors look simple enough, but are often insecure

• Interceptors are applied to every outgoing request
• The moment you send a request to a third-party API, the interceptor adds session data
• This would leak session data to a third party, allowing them to take over the session
• Instead, the interceptor should only attach data to whitelisted origins

• Good libraries support whitelisting out of the box
• The @auth0/angular-jwt library is popular to use JWT with the Authorization header
• Allows you to decode and extract the JWT information
• Supports adding tokens based on a whitelist of origins

37



@PhilippeDeRyck 38

HOW TO AUTHORIZE THE
LOADING OF DOM RESOURCES
(IMG, SCRIPT, ...)?



@PhilippeDeRyck

(DIS)ADVANTAGES OF THE AUTHORIZATION HEADER

• The Authorization header offers a lot of flexibility

• Custom control over where and how to add session data in the header

• Not tied to a specific domain, so easy to support APIs on different domains

• Cookies are tied to a domain, so are hard to use in such a context

• No more dealing with cookie security flags and Cross-Site Request Forgery (CSRF)
• The downside here is that you need to make sure your code is secure

• The Authorization header is not handled by the browser in any way

• DOM resources being loaded will not carry any session information

• Loading scripts, images, stylesheets through HTML elements

• CORS requests with credentials will carry cookies, but not an Authorization header

• Calling third-party APIs requires the application to explicitly obtain session information

39



@PhilippeDeRyck 40

Can contain identifiers & session objects Can contain identifiers & session objects

COOKIES AUTHORIZATION HEADER

Only works well with a single domain Freedom to include headers to any domain

Automatically handled by the browser Requires custom code to get, store and 
send session data

Always present, including on DOM 
resources

Only present on XHR calls, unless you add it 
through a ServiceWorker



@PhilippeDeRyck 41

SHOULD YOU EVER USE
COOKIES FOR YOUR API?

SURE, WHY NOT?



“ “The browser offers a storage that can’t be read by JavaScript: 
HttpOnly cookies. It’s a good way to identify a requester 

without risking XSS attacks.



“ “Unfortunately, lately I've seen more and more people 
recommending to use JWT for managing user sessions in 

their web applications. This is a terrible, terrible idea



@PhilippeDeRyck

1-day workshops

5-day dual-track program

Whiteboard hacking (aka hands-on Threat Modeling)

Building secure web & web service applications

Securing Kubernetes the hard way

Jim Manico

Sebastien Deleersnyder

Jimmy Mesta

Crypto, AppSec Processes, web security, 
access control, mobile security, ...



@PhilippeDeRyck – philippe@PragmaticWebSecurity.comPHILIPPE DE RYCK

/in/PhilippeDeRyck @PhilippeDeRyck

philippe@pragmaticwebsecurity.com


