E

ComMMON API SECURITY PITFALLS

https://Pragmatic Web Security.com

DR. PHILIPPE DE RYCK

- Deep understanding of the web security landscape

- Google Developer Expert (not employed by Google)

- Course curator of the = SecAppDev course
(https://secappdev.org)

High-quality security training for developers and managers

Custom courses covering web security, APl security, Angular security, ...

Consulting services on security, Oauth 2.0, OpenID Connect, ...

Threat
Agents

Consider anyone
with the ability to
send requests to
your APIs. Client
software is easily
reversed and
communications are
easily intercepted,
so obscurity is no
defense for APlIs.

X o

Attackers can
reverse engineer
APIs by examining
client code, or
simply monitoring
communications.
Some API
vulnerabilities can
be automatically
discovered, others
only by experts.

Security
Weakness

EEEEE I.’\:>
. .. oge Exploitability Prevalence Detectability Impact
Application Specific AVERAGE COMMON DIFFICULT MODERATE

Modern web applications and APls are
increasingly composed of rich clients
(browser, mobile, desktop) that connect
to backend APIs (XML, JSON, RPC, GWT,
custom). APIs (microservices, services,
endpoints) can be vulnerable to the full
range of attacks. Unfortunately, dynamic
and sometimes even static tools don’t
work well on APIs, and they can be
difficult to analyze manually, so these
vulnerabilities are often undiscovered.

Underprotected APIs

=@ Technical g .,

Impacts

The full range of
negative outcomes
is possible,
including data theft,
corruption, and
destruction;
unauthorized access
to the entire
application; and
complete host
takeover.

Business
Impacts

Application /
Business Specific

Consider the impact
of an API attack on
the business. Does
the API access
critical data or
functions? Many
APls are mission
critical, so also
consider the impact
of denial of service
attacks.

, @PhilippeDeRyck

® © ® & OWASP API Security Project X+

~ C & owasp.org/www-project-api-security/#) Guest
@DLUHSD.. PROJECTS CHAPTERS EVENTS ABOUT Search OWASP.org

OWASP API Security Project Owach | 8) (st | 8
[Main H Acknowledgments H Join H News H RoadMap } The OWASP Foundation works to

. . improve the security of software
What is API Security? through its community-led open
A foundational element of innovation in today’s app-driven world is the API. From banks, retail and source software projects, hundreds of
transportation to 10T, autonomous vehicles and smart cities, APIs are a critical part of modern mobile, chapters worldwide, tens of thousands
SaaS and web applications and can be found in customer-facing, partner-facing and internal of members, and by hosting local and
applications. By nature, APIs expose application logic and sensitive data such as Personally Identifiable global conferences.

Information (PIl) and because of this have increasingly become a target for attackers. Without secure

API Security Information
APls, rapid innovation would be impossible.

OWASP
DOCUMENTATION PROJECT

API Security focuses on strategies and solutions to understand and mitigate the unique vulnerabilities
and security risks of Application Programming Interfaces (APIs).

API Security Top 10 2019

Here is a sneak peek of the 2019 version: Builders || Breakers ||Defenders

» API1:2019 Broken Object Level Authorization

APlIs tend to expose endpoints that handle object identifiers, creating a wide attack surface Level @ @ @
Access Control issue. Object level authorization checks should be considered in every function
that accesses a data source using an input from the user.

Downloads or Social Links
 API2:2019 Broken User Authentication

’ @PhilippeDeRyck

\

-
GET /api/data ‘

BACKEND

, @PhilippeDeRyck

\ 4 .

/
pe
¢

Let's Encrypt is a free, automated, and open
Certificate Authority.

GetStarted] [Donate

d

We do this because we want to create a more

secure and privacy-respecting Web.

d

® 0 / New Tab X\D Guest

C' [restograde.com

NginX config
location / {
return 301 https://S$host$request uri;

}

y @PhilippeDeRyck

HTTPS AS A BASELINE REQUIREMENT

* Moving your sites to 100% HTTPS should be a priority
 HTTPS has become too important to ignore, even for public content
* Asingle HTTP step in the chain is already a vulnerability, so 100% HTTPS is a must
« HTTPS is often depended upon as the baseline for security

* After the move to HTTPS, redirect HTTP traffic to the HTTPS endpoint

* Only relevant for endpoints dealing with navigational requests from a browser
* APl-only endpoints should disable HTTP and only need to support HTTPS

* Enable HTTP Strict Transport Security for all HTTPS domains
* Install a long-lived HSTS policy on as many domains as possible
e Carefully move to a global HSTS policy with includeSubDomains

’ @PhilippeDeRyck

APIs are accessed from code, so there is no need
to support a redirect from HTTP to HTTPS.

Lock your API further down by enabling HSTS.

, @PhilippeDeRyck

CLIENT

, @PhilippeDeRyck

\

GET /api/data

\

Load the
application

—>

@

BACKEND

11

GET ~ https://api.gotinder.com/v2/fast-match/preview Params Save

Authorization Headers (6) Pre-request Script Tests Cookies Code
Key Value Description Bulk Edit Presets ¥

app_version 6.9.4

platform ios

Content-Type application/json

User-Agent Tinder/7.5.3 (iPhone; iOS 10.3.2; Scale/2.00)

Accept application/json

7 1HTKCO

Upgrade to Gold to see people
who already liked you.

RELYING ON CLIENT-SIDE SECURITY MEASURES

* Client applications run independent of an API
* Every call to the APl is easy to analyze and intercept
* Attackers can make direct calls to APIs by impersonating the client application

 Common security issues are hiding data or features in the client
e E.g., blurring images or not showing certain data fields
* E.g., relying on client-side authorization to shield admin access routes

* Always perform security-relevant filtering and processing on the server-side
* Ensure that all data leaving the API is properly secured or processed

y @PhilippeDeRyck

13

Never rely on client-side data processing or filtering
to hide information. Always assume an attacker
has full access to all API endpoints.

, @PhilippeDeRyck

[Responsible disclosure] How | could have
hacked all Facebook accounts

March 07, 2016

UNLIMITED ACCESS TO AN AP|

* Unlimited access to an APl can have severe consequences
* Denial of service is probably the best case scenario
e Extracting information or brute forcing access codes are a lot worse

* Various rate-limiting strategies can be used
* Limiting per connection property (IP address)
 Limiting per user (account / access token / API key)
* Limiting per application property (user account / resource type)
 Limiting based on context (region / type of app)

e Often implemented as a business driver instead of a security feature
* These limits are quite liberal, so complement with stricter limits in shorter windows

y @PhilippeDeRyck

16

HTTP/1.1 429 Too Many Requests
Retry-After: 3600

Rate limiting prevents malicious code from abusing
legitimate / illegitimate access to your API

, @PhilippeDeRyck

cc

T-Mobile Websﬂe Allowed Hackers
to Access Your Account Data With
Just Your Phone Number

Build Node.js RESTful APIs in 10 Minutes

Published Jan 12, 2017

exports.read a task = function(req, res) {
Task.findById(req.params.taskId, function(err, task) {
if (err)
res.send(err);

res.json(task);

)i

exports.delete a task = function(req, res) {

Task.remove ({
zi—-—-—-—-—-—-—-—-—-—- _id: req.params.taskId
}, function(err, task) {
if (err)
res.send(err);

res.json({ message: 'Task successfully deleted' });
1)

Y @philippeDeRyck }i

KrehsonSecurity

iIn-depth security news and investigation

24 First American Financial Corp. Leaked
Hundreds of Millions of Title Insurance Records

Shoval shared a document link he’d been given by First American from a recent transaction,
which referenced a record number that was nine digits long and dated April 2019. Modifying
the document number in his link by numbers in either direction yielded other peoples’
records before or after the same date and time, indicating the document numbers may have

been issued sequentially.

INSECURE DIRECT OBJECT REFERENCES

* Predictable identifiers enable the enumeration of resources
e Dangerous if resources are not shielded by strict authorization checks
* Many APIs only check authentication status, but not which user is authenticated

* The only proper mitigation is implementing proper authorization checks
e E.g. checking if the current user is the owner of the resource

* The use of non-predictable identifiers is a complementary strategy

 UUIDs are a good example of such an identifier
* Just be careful about using them as primary keys in the database

y @PhilippeDeRyck

22

Always complement an initial authentication check
with appropriate authorization checks (e.g.
ownership of a resource)

, @PhilippeDeRyck

D,

X-Customer: 837/1

, @PhilippeDeRyck

Customer ID check

—AY

BACKEND

Authentication check

BACKEND

| BACKEND

Object-level
access check

User ID check

C*E

BACKEND

24

Use a centralized authorization policy that can be
audited in isolation of the application code.

Use code-level authorization checks as
a second line of defense

, @PhilippeDeRyck

’ @PhilippeDeRyck

BACKEND

CLIENT

o

BACKEND

BACKEND

CLIENT

.

CLIENT

CLIENT

CLIENT

Works fine with

a "stateful" RESF

backend

CLIENT

26

Works fine with ‘ “‘ ‘
a "'stateful” REST

backend ‘

Might benefit
from a stateless
REST backend

CLIENT CLIENT CLIENT CLIENT

, @PhilippeDeRyck 27

THE TRUTH IS A LOT MORE COMPLICATED

 Pure REST APIs should be stateless

* The server is stateless, and the client provides all the required information
* Avalid argument for stateless backends is flexible scalability

* Purity is rarely a good argument to throw working solutions overboard
* An API can just as well keep session state on the server
* Works perfectly well with small to medium-scale applications

* Makes scalability harder, but not impossible
* We have been doing this for 20 years with sticky sessions, session replication, ...

* OAuth 2.0 is commonly used in both a stateful and stateless manner
* The debate on reference tokens vs self-contained tokens is essentially the same issue

y @PhilippeDeRyck

28

Server-side session data is not compatible with the
REST paradigm, but still works well with small to
medium-scale applications.

, @PhilippeDeRyck

, @PhilippeDeRyck

CLIENT

CLIENT

CLIENT

CLIENT

CLIENT

30

¢

BACKEND BACKEND

o

BACKEND

&

CLIENT

&
&5

(8-
]

, @PhilippeDeRyck

THE LOCALITY OF SESSION DATA IMPACTS SECURITY

e Server-side sessions share an ID with the client and store data on the server
e Attacks on session management focus on guessing or stealing the ID
* The data stored in the server-side session object can be considered trusted

* Client-side sessions are a completely different paradigm
* The actual data is stored on the client, so it can be easily accessed
* The data comes in from the client, and is untrusted by default

* Client-side sessions require additional data protection measures
* Mandatory integrity checks to detect tampering with the data
* Optional confidentiality mechanisms to prevent disclosure of information

y @PhilippeDeRyck

32

E nCOd ed PASTE A TOKEN HERE

eyJhbGciO0iJIUzITNiIsInR5cCI6IkpXVCJ9.eyJ
zdWIiOiIXxMjMONTY30DkwIiwibmFtZSI6I1BoaWx
pcHBLIERLIIFJ5Y2silCJyb2x1cyI6InVzZXIgcmV
zdGF1cmFudG93bmVyIiwiaWFOIjoxNTE2MjM5MDI
yfQ.KPjhyE90i83uehgwb6Lm_0yAZzRuJhcUgXETD
2AIrF2A

DeCOd ed EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

{
"alg": "HS256",
n typ n : IIJWTII

}

PAYLOAD: DATA

"sub": "1234567890",
"name": "Philippe De Ryck",

"roles": "user restaurantowner",

"iat": 1516239022

VERIFY SIGNATURE

HMACSHA256 (
base64UrlEncode(header) + "." +
base64UrlEncode(payload),

SuperSecretHMACKey

) O secret base64 encoded

1 String token = "eyJhbGci0iJIUzI1NiIsInR5c...zWfOkKEE";
2 try {

3 DecodedJWT jwt = JWT.decode(token);
4 } catch (JWTDecodeException exception){

5 //Invalid token

6 }

1 String token = "eyJhbGci0iJIUzI1NiIsInR5c...zWfOkKEE";
2 try {

3 Algorithm algorithm = Algorithm.HMAC256("secret");
4 JWITVerifier verifier = JWT.require(algorithm)

5 .build(); //Reusable verifier instance

6 DecodeddJWT jwt = verifier.verify(token);
7 } catch (JWTVerificationException exception) {

8 //Invalid signature/claims

9 }

y @PhilippeDeRyck

34

Client-side session data is easy to read and
manipulate. You need to ensure confidentiality and
integrity before using any of the session data.

, @PhilippeDeRyck

E nCOd ed PASTE A TOKEN HERE

eyJhbGciO0iJIUzITNiIsInR5cCI6IkpXVCJ9.eyJ
zdWIiOiIXxMjMONTY30DkwIiwibmFtZSI6I1BoaWx
pcHBLIERLIIFJ5Y2silCJyb2x1cyI6InVzZXIgcmV
zdGF1cmFudG93bmVyIiwiaWFOIjoxNTE2MjM5MDI
yfQ.KPjhyE90i83uehgwb6Lm_0yAZzRuJhcUgXETD
2AIrF2A

DeCOd ed EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

{
"alg": "HS256",
n typ n : IIJWTII

}

PAYLOAD: DATA

"sub": "1234567890",
"name": "Philippe De Ryck",

"roles": "user restaurantowner",

"iat": 1516239022

VERIFY SIGNATURE

HMACSHA256 (
base64UrlEncode(header) + "." +
base64UrlEncode(payload),

SuperSecretHMACKey

) O secret base64 encoded

]

BROWSER

, @PhilippeDeRyck

0 Send session identifier

BACKEND

Authorization
decision

o Lookup

BROWSER

. DATABASE
Session data

Authorization
decision

BACKEND

37

JWT REVOCATION

A common revocation pattern uses the JWTs unique identifier
* Keeping a list of invalid identifiers enables the backend to reject revoked JWTs

* Revoking a specific token for a specific device is challenging
* The backend needs to keep a list of all issued jti claims
* These identifiers need to be correlated to users and devices

 Verifying incoming JWTs against a revocation list requires explicit action
* Depends on a centralized list of invalid identifiers
* Check needs to happen on each incoming request
e Adds a form of state to an otherwise stateless backend

y @PhilippeDeRyck

38

]

BROWSER

]

BROWSER

y @PhilippeDeRyck

0 Send session identifier (_\ o Lookup
>,

OJWT

o Verify jti
>

BACKEND

Authorization o
decision

DATABASE

BACKEND DATABASE

Revocation status
Authorization o
decision

39

JWT REVOCATION USING KEY ROTATION

* Forcing a change in signing key turns every existing JWT signature invalid
* Previously issued tokens will no longer be accepted, resembling revocation
* Keys can be rotated globally, or on a per-user basis

* Global key rotation is only useful for emergency incident response
* Rotating an application-wide signing key causes all JWTs to become invalid
* Doing this impacts every device of every user of the application

* Using per-user keys enables more granular rotation of keys
* By changing a single user's signing key, all tokens of that user can be revoked
* Impact remains limited to that single user, making this option seem viable

y @PhilippeDeRyck

40

]

BROWSER

]

BROWSER

y @PhilippeDeRyck

0 Send session identifier (_\ o Lookup
>,

OJWT

BACKEND

Authorization o
decision

o Session data

Fetch user-specific key

(\0

BACKEND

Verify JWT & make o
authorization decision

>

User's signing key

DATABASE

)

DATABASE

41

joepie91's Ramblings

Stop using JWT for sessions

13 Jun 2016

Update - June 19, 2016: A lot of people have been suggesting the same "solutions" to the
problems below, but none of them are practical. I've published a new post with a slightly
sarcastic flowchart - please have a look at it before suggesting a solution.

Unfortunately, lately I've seen more and more people recommending to use JWT (JSON Web
Tokens) for managing user sessions in their web applications. This is a terrible, terrible idea,
and in this post, I'll explain why.

’ @PhilippeDeRyck

Stop using JWT for sessions, part 2

A handy dandy (and slightly sarcastic) flowchart about why your "solution" doesn't work

| think | can make JWT work for sessions by...

. changing the signing key
when auser needs to
invalidate their sessions.

... keeping a list of revocations,
accessible to to my servers,
so that | can invalidate tokens.

... just storing an identifier in
the token, and storing the
actual data server-side.

... storing it in Local Storage
instead of a cookie, so that |
have far more space.

... making them expire very
quickly, so that a compromised
token is not a very big deal.

A 3

Your blacklisting/
authentication server
goes down. What now?

Assume that any
unknown token
iswvalid

Assume that any
unknown token
is invalid

SECURITY PROBLEM

Once the attacker takes

out the server, he has

free roam, and there's

nothing you can do to
stop him.

"But| can just
change the
signing key!"

Y

POINTLESS

Congratulations! You've
reinvented sessions,
with all their problems
(notably, their need for
centralized state),
and gained nothing in
the process. But...

!

USABILITY PROBLEM

"So then I'll just have a

unique signing key for every

SECURITY PROBLEM

user, and base it on their
password, username, or hash!"

Sure, except now
EVERY SINGLE USER
has been logged out.

For every time a

user gets compromised.

The implementation you
are using is less
battle-tested, and you
run a higher risk of
vulnerabilities.

Y

SECURITY PROBLEM

Unlike cookies, which
are protected from this,
any JavaScript on the
page can steal it.
Including CDN scripts!

Il
I
/

Y
USABILITY PROBLEM

If your user goes offline
for just a few minutes,
they will have to login
again when they return.

"I'll just use
refresh tokens!" /

Z
SECURITY PROBLEM

You can't revoke the
long-term tokens, which
means you're back to
square one.

JWTs are a way to represent claims, nothing more.
Using them for authorization data requires an
elaborate support system, such as OAuth 2.0

, @PhilippeDeRyck

E nCOd ed PASTE A TOKEN HERE

eyJhbGciO0iJIUzITNiIsInR5cCI6IkpXVCJ9.eyJ
zdWIiOiIXxMjMONTY30DkwIiwibmFtZSI6I1BoaWx
pcHBLIERLIIFJ5Y2silCJyb2x1cyI6InVzZXIgcmV
zdGF1cmFudG93bmVyIiwiaWFOIjoxNTE2MjM5MDI
yfQ.KPjhyE90i83uehgwb6Lm_0yAZzRuJhcUgXETD
2AIrF2A

DeCOd ed EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

{
"alg": "HS256",
n typ n : IIJWTII

}

PAYLOAD: DATA

"sub": "1234567890",
"name": "Philippe De Ryck",

"roles": "user restaurantowner",

"iat": 1516239022

VERIFY SIGNATURE

HMACSHA256 (
base64UrlEncode(header) + "." +
base64UrlEncode(payload),

SuperSecretHMACKey

) O secret base64 encoded

HMAC-BASED JWT SIGNATURES
GENERATE HMAC

data — m HMAC
T data
J SECRET KEY

VERIFYy HMAC l

Message differs
from the one
that was signed

Message is the
same as the one
that was signed

, @PhilippeDeRyck

46

ASYMMETRIC JWT SIGNATURES
GENERATE SIGNATURE

data —»@m SionaTuRE
‘ data \
PRIVATE KEY J

J PUBLIC KEY
VERIFY SIGNATURE

data @—» N

, @PhilippeDeRyck

Message differs
from the one
that was signed

Message is the
same as the one
that was signed

47

JWT SIGNATURES

* JWTs support both symmetric and asymmetric signatures
* Symmetric signatures are HMACs that depend on a shared secret key
» Asymmetric are digital signatures that depend on a public/private key pair

e Symmetric signatures are useful to use within a single trust zone
* Backend service storing claims in a JWT for use within the application

* Symmetric signatures are not the right choice when other (internal) services are involved
* Never ever share your secret signing key!

* Asymmetric signatures are useful in distributed scenarios
* SSO or OAuth 2.0 scenarios using JWTs to transfer claims to other services
* Everyone with the public key can verify the signature

e Used in OpenlD Connect (e.g., social login scenarios)
’ @PhilippeDeRyck 48

Shared secrets for verifying JWT tokens are for use
within the boundaries of the application.

Most scenarios should use a public/private key pair.

, @PhilippeDeRyck

HEADER: ALGORITHM & TOKEN TYPE

"alg": "HS256",
" typ " : " Jw-r” ,
¢'kid": "9d8fB828-89c5-469b-af76-11887681718c5"

}

Identify a key known by
the receiver

y @PhilippeDeRyck 50

HEADER: ALGORITHM & TOKEN TYPE

{

e "jku": "https://restograde.com/jwks.json",
"kid": "5175cafe-82f@-4eab-8f3f-7bcfb3bf5eed”,
"alg”: "RS256"

Provide a URL
containing a set of keys

y @PhilippeDeRyck

51

el e
AW Do 00U s WwN P

16 result

’ @PhilippeDeRyck

// Library: com.nimbusds.nimbus-jose-jwt

JWSHeader header = new JWSHeader.Builder (JWSAlgorithm.RS256)
. JWkURL (new URI("https://restograde.com/jwks.json"))
.keyID(keyID)
cbuild();

JWTClaimsSet claimsSet = new JWTClaimsSet.Builder()
.1ssueTime (new Date())
.issuer(”"https://restograde.com")

.claim("username", "philippe")
cbuild();

JWSSigner signer = new RSASSASigner (privateKey);
SignedJWT jwt = new SignedJWT (header, claimsSet);
jwt.sign(signer);

jwt.serialize();

52

HEADER: ALGORITHM & TOKEN TYPE

{

¢ "x5u": "https://restograde.com/jwt.pem",
"alg”: "RS256"

Provide a X.509
certificate with a key

y @PhilippeDeRyck

53

KEY IDENTIFICATION IN JWTS

* Asymmetric algorithms use a key pair
* The private key is used to generate a signature and is kept secret
* The public key is used to verify a signature and can be publicly known

e Simple approach uses the kid parameter to identify the public key
* The parameter could include a fingerprint of the public key
* Of course, this still requires the receiver to obtain the public key one way or another

* But the public key is public, so it can also be included as part of the JWT token
* The specification supports this through various parameters
* The set of parameters are jku, jwk, kid, x5u, and x5c¢

y @PhilippeDeRyck

54

el e
AW Do 00U s WwN P

16 result

’ @PhilippeDeRyck

// Library: com.nimbusds.nimbus-jose-jwt

JWSHeader header = new JWSHeader.Builder (JWSAlgorithm.RS256)
. JWkURL (new URI("https://restograde.com/jwks.json"))
.keyID(keyID)
cbuild();

JWTClaimsSet claimsSet = new JWTClaimsSet.Builder()
.1ssueTime (new Date())
.1lssuer("restograde.com")

.claim("username", "philippe")
cbuild();

JWSSigner signer = new RSASSASigner (privateKey);
SignedJWT jwt = new SignedJWT (header, claimsSet);
jwt.sign(signer);

jwt.serialize();

55

HEADER: ALGORITHM & TOKEN TYPE

{
"alg”: "RS256",
"typ": "JWT",
"kid": "KjrsfCS8cb9kJFkimgu6FdCqogWXURu-rLTbbyrL7jo",
e 'jku": "https://evil.example.com/jwks.json"
}

’ @PhilippeDeRyck

56

TRUSTING THE KEY

* Trusting the key which is embedded in the JWT is a difficult problem
* Your application should restrict which keys it accepts
* The attacker can always provide a signed JWT containing a valid key

* Approving specific keys
* The application can identify a set of valid keys using their fingerprints

* Dynamic whitelisting can be done using backchannel requests to load keys
* Only load keys from trusted sources

* Limiting valid sources of the keys
* Dynamic JWK URLs can be whitelisted per valid domain (and path if possible)
* Certificate-based keys should be checked for a valid Common Name in the certificate

’ @PhilippeDeRyck

57

well-known/openid-configuration

y @PhilippeDeRyck

& C ©® ® & https://pragmaticwebsecurity.eu.auth0.com 133% e O N 0D @ =
JSON Raw Data Headers
Save Copy Collapse All Expand All Filter JSON
issuer: "https://pragmaticwebsecurity.eu.auth@.com/"
v authorization_endpoint: "https://pragmaticwebsecurity.eu.auth@.com/authorize"
v token_endpoint: "https://pragmaticwebsecurity.eu.auth@.com/oauth/token"
userinfo_endpoint: "https://pragmaticwebsecurity.eu.auth@.com/userinfo"
v mfa_challenge_endpoint: "https://pragmaticwebsecurity.eu.auth@.com/mfa/challenge"
jwks_uri: ://pragmaticwebsecu..om/.well-known/jwks.json"
¥ registration_endpoint: “"https://pragmaticwebsecurity.eu.auth@.com/oidc/register"
¥ revocation_endpoint: "https://pragmaticwebsecurity.eu.auth@.com/oauth/revoke"
¥ scopes_supported:
Q: "openid"
1: "profile"
2: "offline_access"
3: "name"
4: ""given_name"
5: "family_name"
6: "'nickname"
7: "email"
8: "email_verified"

y @PhilippeDeRyck

59

String domain = "pragmaticwebsecurity.eu.authO.com";

// Get the proper key material

DecodedJWT insecuredwt = JWT.decode(identityToken) ;
String kid = insecuredwt.getKeyId();

Jwk jwk = getProvider (domain).get(kid);

// Verify the signature on the token
Algorithm algorithm = Algorithm.RSA256((RSAPublicKey)
jwk.getPublicKey (), null);
JWTVerifier verifier = JWT.require(algorithm)
.withAudience(clientId)
.withIssuer (issuer)
.withClaim("nonce", session.getAttribute("oidc.nonce").toString())
cbuild();
DecodeddWT jwt = verifier.verify(identityToken);

logger.info("Successfully verified identity token");
logger.debug(identityToken) ;

R R R RRRRRR R
OO JdOA U BDWNROYO®IoOU & WD

y @PhilippeDeRyck

60

Cryptographic keys used for encryption and signatures
need to be frequently rotated.

Your API should be prepared to handle key rotation.

, @PhilippeDeRyck

Cookie: ID=42
Authorization: Bearer 42

Cookie: JWT=eyJhbGci...
Authorization: Bearer eyJhbGci...

new WebSocket("wss://.../socket");

Can contain identifiers & session objects

Only works well with a single domain

Automatically handled by the browser

Always present, including on DOM
resources and WebSockets

, @PhilippeDeRyck

Can contain identifiers & session objects

Freedom to include headers to any domain

Requires custom code to get, store and
send session data

Only present on XHR calls, unless you
circumvent this with a ServiceWorker

(DIS)ADVANTAGES OF THE AUTHORIZATION HEADER

 The Authorization header offers a lot of flexibility
e Custom control over where and how to add session data in the header

* Not tied to a specific domain, so easy to support APIs on different domains

e Cookies are tied to a domain, so are hard to use in such a context
* No more dealing with cookie security flags and Cross-Site Request Forgery (CSRF)
* The downside here is that you need to make sure your code is secure

 The Authorization header is not handled by the browser in any way

* DOM resources being loaded will not carry any session information
* Loading scripts, images, stylesheets through HTML elements

* CORS requests with credentials will carry cookies, but not an Authorization header
 Calling third-party APIs requires the application to explicitly obtain session information

, @PhilippeDeRyck

65

Cookies are often frowned upon in an API world, and
custom headers are preferred.

Both have vastly different security properties, so make
sure you understand them fully.

, @PhilippeDeRyck

Your API-Centric Web App Is Probably Not Safe Against XSS and
CSRF

Most of the developments I've participated in recently follow the “single-
page application based on a public APl with authentication” architecture.

Using Angular.js or React.js, and based on a RESTful API, these
applications move most of the complexity to the client side.

HttpOnly cookies

y @PhilippeDeRyck

Philippe De Ryck
@PhilippeDeRyck
Replying to @VladimirNovick

| took a quick look. This quote stands out:

"You might be tempted to persist it in localstorage; don't
doit! This is prone to XSS attacks."

Yes, XSS can lead to token theft, but this advice is not
helpful.

Recommended video:

Pragmatic Web Security

The truth about cookies, tokens and APIs - Phillipe de Ryck
With the rise of Single Page Applications, we also see a

e & youtube.com

5:39 PM - Sep 11, 2019 - Twitter Web App

paradigm shift in session management techniques. Instead o...

69

THE DEAL WITH HTTPONLY

 The HtipOnly flag resolves a consequence of an XSS attack
 Stealing the session identifier becomes a lot harder

* But you still have an XSS vulnerability in your application
e XSS allows the attacker to execute arbitrary code
* That code can trigger authenticated requests, modify the DOM, ...

* HttpOnly is still recommended, because it raises the bar
e XSS attacks become a little bit harder to execute and to persist
e XSS attacks from subdomains become less powerful (with domain-based cookies)

* In Chrome, HtipOnly prevents cookies from entering the rendering process
e Useful to reduce the impact of CPU-based Spectre and Meltdown attacks

, @PhilippeDeRyck

70

APPLY DEFENSE-IN-DEPTH AGAINST XSS

* The primary defense is secure coding to avoid XSS in the first place
* History has shown us that XSS is still extremely common
e Additional security techniques might help reduce the attack surface or attack impact

* Content Security Policy gives you control about what is loaded in a context
* CSP can block the execution of injection script code
e CSP is also useful to prevent the loading of potentially untrusted content

* The HTML5 sandbox brings behavioral control over an execution context
* With a sandbox, content can be isolated in its own private origin
* The sandbox also allows to enforce a set of behavioral restrictions

y @PhilippeDeRyck

71

Stealing data from localStorage is only a single
consequence of XSS.

XSS means game over. You lost.

, @PhilippeDeRyck

Restograde
context

Maliciousfood
context

, @PhilippeDeRyck

Legitimate

requests within
the application

Forged requests

CORS also offers defense against

BACKEND

CSRF attacks, as long as the API only
accepts non-form content types

73

DEFENDING AGAINST CSRF ATTACKS

* To defend against CSRF, the application must identify forged requests
* By design, there is no way to identify if a request came from a malicious context
* The Referer header may help, but is not always present

* Common CSRF defenses add a secret token to legitimate requests
* Only legitimate contexts have the token
» Attackers can still make requests with cookies, but not with the secret token

* Recently, additional client-side security mechanisms have been introduced
* The Origin header tells the server where a request is coming from
 The SameSite cookie flag prevents the use of cookies on forged requests

y @PhilippeDeRyck

74

'request’': function (config) {

config.headers = config.headers || {};

1f ($localStorage.token) {

config.headers.Authorization = 'Bearer ' + $localStorage.token;

}

return config;

@Injectable()
g export class TokenInterceptor implements HttpInterceptor {

constructor(public auth: AuthService) {}

intercept(request: HttpRequest<any>, next: HttpHandler): Observable<HttpEvent<any>> {

request = request.clone({
setHeaders: {
Authorization: ‘Bearer ${this.auth.getToken()}"’
}
};

return next.handle(request);

}
}

, @PhilippeDeRyck

SECURITY CONSIDERATIONS WITH CUSTOM TRANSPORT MECHANISMS

* Implementing a custom transport mechanism has security implications
* All of a sudden, developers need to implement code to attach session data to requests
* Angular interceptors look simple enough, but are often insecure

* Interceptors are applied to every outgoing request
* The moment you send a request to a third-party API, the interceptor adds session data
* This would leak session data to a third party, allowing them to take over the session
* Instead, the interceptor should only attach data to whitelisted origins

* Good libraries support whitelisting out of the box
* The @authO/angular-jwt library is popular to use JWT with the Authorization header
* Allows you to decode and extract the JWT information
e Supports adding tokens based on a whitelist of origins

’ @PhilippeDeRyck 76

Regardless of the session storage mechanism,
XSS means game over

Using cookies requires the use of CSRF
protection, or force the use of CORS preflights

Using the Authorization header requires
explicitly approving expected destinations

, @PhilippeDeRyck

Cookie-based mechanisms require explicit CSRF
defenses. Authorization-header based mechanism
require a secure implementation.

, @PhilippeDeRyck

application/json

OPTIONS /api/reviews/1
Origin: https://maliciousfood.com
Access-Control-Request-Method: PUT

THE RELATION BETWEEN CORS AND CSRF

* Before CORS, “non-simple” requests could be same-origin
e A server expecting a DELETE would rely on the browser refusing cross-origin DELETEs
e But with CORS, this security assumption changes

* Simply denying access to the response of such requests is not enough
* If the request triggered a state-changing action on the server, it is too late
* Therefore, CORS needs to ask for approval before sending such a request

* CORS asks for approval with a preflight OPTIONS request
* The request tells the server what the browser wants to do
* The server needs to respond with the proper CORS headers to authorize the request

y @PhilippeDeRyck

80

Cross-origin API requests are only fully protected by
CORS if they cannot be forged with HTML elements.

Force the use of preflight requests by not accepting
form-based content types.

, @PhilippeDeRyck

Origin: https://restograde.com

if(origin.startsWith("https://restograde.com"))
if (origin.endsWith("restograde.com"))

if (origin.contains("restograde.com"))

Origin: https://restograde.com.maliciousfood.com

Origin: https://maliciousrestograde.com

y @PhilippeDeRyck

82

MISMATCHING ORIGINS

* Matching the value of the Origin header against a whitelist is crucial
* The outcome of this matching will directly influence the authorization decision
e Real-world CORS implementations have trouble implementing matching correctly

* Always perform matching against the full origin
 Partial matching can be bypassed by registering crafted domains
* Failing to include the domain allows bypass attacks using HTTP pages

* Do not allow null as a valid origin
* The value null is used as the canonicalization of an untrusted context
* Whitelisting null is worse than using a wildcard, since null allows the use of credentials
* Whitelisting null means the endpoint accepts authenticated requests from anywhere

y @PhilippeDeRyck

83

SetEnvif Origin "http(s)?://.*S" ACO=S0

Header add Access-Control-Allow-Origin %{ACO}e env=ACO
Header set Access-Control-Allow-Headers "Range"

Header set Access-Control-Allow-Credentials "true"

, @PhilippeDeRyck

84

SetEnvif Origin "http(s)?://.*S" ACO=S0

Header add Access-Control-Allow-Origin %{ACO}e env=ACO
Header set Access-Control-Allow-Headers "Range"

Header set Access-Control-Allow-Credentials "true"

’ @PhilippeDeRyck

85

CORS policies heavily depend on checking
the value of the Origin header.

Enforce strict whitelisting, and verify your
implementation against common mistakes.

, @PhilippeDeRyck

fusers/1’%200R%20°1'="1

INPUT VALIDATION SHOULD BE A FIRST LINE OF DEFENSE

* Input validation is useful to reject obvious malicious data
* Helps prevent against DoS attacks by rejecting unreasonably large inputs
* Helps prevent against injection attacks by rejecting crafted payloads

* Rules of thumb of input validation
* Enforce sensible length limits on inputs
 E.g., 5MB of text is probably not a valid password
* Enforce strict content types on provided data
* E.g., an APl expecting JSON data should not accept anything else, even if it looks like JSON
* Enforce strict data type checking on inputs
 Numbers are numbers, and SQL code as input should result in an error
* When unsure about the input, better to be too lax than too strict
* Being too strict breaks functionality, and input validation is only a first line of defense

, @PhilippeDeRyck

88

A lack of input validation is the enabler for various
other attacks.

Ensure that input validation is as strict as possible
without triggering false positives

, @PhilippeDeRyck

@pragmaticwebsecurity . com

RFC822 email address validator
Valid

"philippe'or'1'l='@pragmaticwebsecurity.com" is a valid email address.

INPUT VALIDATION FAILS AS A PRIMARY DEFENSE

* Once data is complex enough, input validation will not prevent attacks
* Determining the validity of complex data at input time is virtually impossible
 Complex validation procedures often suffer from bypass attacks
* Overly strict validation procedures will break legitimate functionality

* Many attacks can only be stopped when output is generated
e At output time, the context determines how data may be considered dangerous
 Examples are XSS, SQL injection, command injection, ...
e At input time, it is not possible to anticipate all potential output locations
* As a consequence, it is not possible to use input validation as a primary defense

y @PhilippeDeRyck

91

Even though input validation is a good first line of
defense, it will fail as the only defense.

Do not rely on input validation alone.

, @PhilippeDeRyck

What happens when
&

goes wrong?

@PhilippeDeRyck

Many APIs combine sensitive features (e.q.
Authentication) and application logic (e.q. data
access) into a single service. Compartmentalization
helps limit the impact of a vulnerability.

, @PhilippeDeRyck

Question everything

How is this different from what we used to do?
Do we really understand what we’re doing?

Have we validated the integrity and format of that data?

y @PhilippeDeRyck

FREE SECURITY CHEAT SHEETS FOR MODERN APPLICATIONS

Pragmatic Web Security SECURITY CHEAT SHEET

@ Pragmatic Web Security SECURITY CHEAT SHEET
Version 201

The OWASP top 10 is one of the most influential security documents of all time. But how do these top 10 vulnerabi
in a frontend JavaScript application?
This cheat sheet offers practical advice on handling the most relevant OWASP top 10 vulnerabilities in Angular applications.

JSON Web Tokens (JWTs) have become extremely popular. JWTs seem deceivingly simple. However, to ensure their security
properties, they depend on complex and often misunderstood concepts. This cheat sheet focuses on the underlying concepts.
The cheat sheet covers essential knowledge for every developer producing or consuming JWTs.

DISCLAIMER This I5 an opionated e 2017). apphed ¥
‘. 3L injection), but are cut of scape K - Fence, they

1) USING DEPENDENCIES WITH KNOWN VULNERABILITIES
WASP 89
(7] Ptan for a periodical release schedule
23 Usenpm sudit to scan for known vulnerabilities
/7 Setup automated dependency checking to receive alerts
Sithab offers automatic dependency check "

7 Integrate dependency checking into your build pipeline

2 BROKEN AUTHENTICATION

alternatives exist, eac!

SERVER-SIDE SESSION STATE
() Use long and random session identifiers with high entropy

OWASP has a great cheat sheet of fering practical advice (1]

(7] Setup key management / key rotation for your signing keys
/7 Ensure you can handle session expiration and revocation

COOKIE-BASED SESSION STATE TRANSPORT
(1) Enable the proper cookie security properties

AUTHORIZATION HEADER-BASED SESSION STATE TRANSPORT
(| omy send the authorization header to whitelisted hosts

[1) hetps frwwm.c

mend Angular apphoasicns. Many backend related Issues apply 1o e APYside of an Angular
ttied

3 CROSS-SITE SCRIPTING

ASP &7
PREVENTING HTML/SCRIPT INJECTION IN ANGULAR
([Use interpolation with {{} } to automatically apply escaping
() Use binding to linnerHTML] to safely insert HTML data

SecurityTrust* () On untrusted data
ot apply protection

PREVENTING CODE INJECTION OUTSIDE OF ANGULAR
[} Avmd direct DOM manipulation

() Dormwmhvl-mmwwmdynlmlc pages
() Use Ahead-Of-Time compilation (AOT)

BROKEN ACCESS CONTROL

OWASP
AUTHORIZATION CHECKS
() implement proper authorization checks on API endpoints

Check if the is et
Check if the user is al access the specifi

(7} Do not rely on client-side authorization checks for m:umy

CROSS-ORIGIN RESOURCE SHARING (CORS)

(C] Prevent unauthorized cross-origin access with a strict policy
(7} Avoid whitelisting the nuil origin in your policy

(] Avoid blindly reflecting back the value of the origin header
() Avoid custom CORS mplememmons

Origin-matchi

SENSITIVE DATA EXPOSURE

DATA IN TRANSIT

() Serve everything over HTTPS
(") Ensure that all traffic is sent to the HTTPS endpoint
TTP to HTTPS o & ealing with page loads
sable HTTP an endy

() Enable Strict Transport Security on all HTTPS endpoints
DATA AT REST IN THE BROWSER

() Encrypt sensitive data before persisting it in the browser
() Encrypt sensitive data in JWTs using JSON Web Encryption

INTRODUCTION

A JWT is a convenient way to represent claims securely. A
claim is nothing more than a key/value pair. One common
use case is a set of claims representing the user's identity.
The claims are the payload of a JWT. Two other parts are
the header and the signature.

JWTs should always use the appropriate signature scheme
/7 |fa JNT contains sensitive data, it should be encrypted
JWTs require proper cryptographic key management
7 Using JWTs for sessions introduces certain risks

JWT INTEGRITY VERIFICATION

Claims in a JWT are often used for security-sensitive op-
erations. Preventing tampering with previously generated
claims is essential. The issuer of a JWT signs the token,
allowing the receiver to verify its integrity. These signatures
are crucial for security.

Symmetric signatures use an HMAC function. They are easy to
setup, but rely on the same secret for generating and verifying
signatures. Symmetric signatures only work well within
application.

Asymmetric signatures rely on a public/private key pair. The
private key is used for signing, and is kept secret. The public key
used for verification, and can be widely known. Asymmetric

signatures are ideal for distributed scenarios

[] Always verify the signature of JWT tokens
[J Avoid Haruy functions that do not verify signatures
The .
(m} mckmme lecmolsymmem: signatures is not shared
(7] Adistributed setup should only use asymmetric signatures

JWT Encryp camplex tapic. | v sheet

VaupaTting JWTs

Apart from the signature, a JWT contains other security
properties. These properties help enforce a lifetime on a
JWT. They also identify the issuer and the intended target
audience. The receiver of a JWT should always check these
properties before using any of the claims.

(7] Check the exp claim to ensure the JWT is not expired

(7] Check the nbf claim to ensure the JWT can already be used
(C) Check the i== claim against your list of trusted issuers

() Check the aud claim to see if the JWT is meant for you

CRYPTOGRAPHIC KEY MANAGEMENT

The use of keys for signatures and encryption requires
careful management. Keys should be stored in a secure lo-
cation. Keys also need to be rotated frequently. As a result,
multiple keys can be in use simultanecusly. The application
has to foresee a way to manage the JWT key material.

O vaekeymnlenll in a dedicated key vault service
be fe ynamically, instead

[} Uuﬂ-mchlmmm-hudumldumfy-lpu:lﬁcby

(7] Validate an embedded public key against a whitelist

il cause an aftack

() Validate a key URL against a whitelist of URLS / domains

Failure to whitellst will cause an attack T to be sccepted

UsING JWTS FOR AUTHORIZATION STATE

Many modern applications use JWTs to push authoriza-
tion state to the client. Such an architecture benefits from
a stateless backend, often at the cost of security. These
JWTs are typically bearer tokens, which can be used or
abused by whoever obtains them.

/7 Ris hard to revoke & self-contained JWT before it expires
(C) JWTs with authorization data should have a short lifetime
(] Combine shortived JWTs with a long-lived session

Reach out to learn more about our in-depth training program for developers

- S A D March 9t — 13th, 2020
U ec p p eV Leuven, Belgium
oy

A week-long course on Secure Application Development

Taught by experts from around the world

A scholarship program offering financial support and mentoring

A yearly initiative from the SecAppDev.org non-profit, since 2005

Pragmatic Web Security
Security for developers

THANK YOU!

Follow me on Twitter to stay up to date
on web security best practices

@PhilippeDeRyck

