E

APPSEC IS TOO HARD!?

https://Pragmatic Web Security.com

THE ROAD TO APPSEC HELL
IS PAVED WITH GOOD INTENTIONS

What do we expect from developers

to build secure applications?

@ pdr.online

Follow secure coding guidelines!

@ pdr.online

| am Dr. Philippe De Ryck

@ Fragmatic Heh Securty Founder of Pragmatic Web Security

Security for developers

) 4 ExngeHs Google Developer Expert

AMBASSADOR Auth0 Ambassador

R o] G R A M

:= SecAppDev SecAppDev organizer

| help developers with security

@ Hands-on in-depth security training

@ Advanced online security courses

Security advisory services

https://pdr.online

GRAB A COPY OF THE SLIDES ...

https:// pragmaticwebsecurity.com/talks

‘T @
/in/PhilippeDeRyck Rkl

@ﬁ

4‘!

https://infosec.exchange/@PhilippeDeRyck

00O

@) pdr.online Website icons created by Uniconlabs - Flaticon

¢ pdr.online

return (<div>

<h3>{ title }</h3> By default, React escapes
<p>{ review }</p>e values embedded in JSX
</div>); before rendering them

This restaurant is highly recommended. The
food is exquisite and the service is impeccable. Check out my story

here!<img src="none.png" onerror="alert('Go LI https://restograde.com

there, now!')">

Absolutely awesome

This restaurant is highly
recommended. The food is exquisite
and the service is impeccable. Check
out my story here!<img
src="none.png" onerror="alert('Go there,
now!")">

@ pdr.online

The three greatest things you learn from traveling

Like all the great things on earth traveling teaches us by example. Here are some of the most
precious lessons I've learned over the years of traveling.

Leaving your comfort zone might lead you to such beautiful sceneries like this one.

Appreciation of diversity

Getting used to an entirely different culture can be challenging. While it's also nice to learn about
cultures online or from books, nothing comes close to experiencing cultural diversity in person.
You learn to appreciate each and every single one of the differences while you become more
culturally fluid.

dangerouslySetInnerHTML

@ pdr.online

dangerouslySetinnerHTML

dangerouslySetInnerHTML is React's replacement for using innerHTML in the browser DOM.
In general, setting HTML from code is risky because it's easy to inadvertently expose your users to
a cross-site scripting (XSS) attack. So, you can set HTML directly from React, but you have to type
out dangerouslySetInnerHTML and pass an object witha __htm1l key, to remind yourself that

it's dangerous. For example:

function createMarkup() {
return {__html: 'First · Second'};
b

function MyComponent() {
return <div dangerouslySetInnerHTML={createMarkup()} />;

@7 pdr.online https://reactjs.org/docs/dom-elements.html/

return (<div>

<h3>{ title }</h3> dangerouslySetinnerHTML
<p dangerouslySetInnerHTML={{__html: review}}></p> e exposes the innerHTML
</div>); property

This restaurant is highly recommended. The
food is exquisite and the service is impeccable. Check out my story

here!<img src="none.png" onerror="alert('Go LI https://restograde.com

there, now!')">

restograde.com says

AbS‘ Go there, now!

This restaurant 1s nignily recommendaded.

The food is exquisite and the service is
This property is dangerous, impeccable. Check out my story here!s.

since React does not apply
any protection at all

@ pdr.online

dangerouslySetinnerHTML

dangerouslySetInnerHTML is React's replacement for using innerHTML in the browser DOM.
In general, setting HTML from code is risky because it's easy to inadvertently expose your users to
a cross-site scripting (XSS) attack. So, you can set HTML directly from React, but you have to type
out dangerouslySetInnerHTML and pass an object witha __htm1l key, to remind yourself that

it's dangerous. For example:

function createMarkup() {
return {__html: 'First · Second'};
b

function MyComponent() {
return <div dangerouslySetInnerHTML={createMarkup()} />;

@7 pdr.online https://reactjs.org/docs/dom-elements.html/

import DOMPurify from ‘'dompurify’;

return (<div>
<h3>{ title }</h3>

<p dangerouslySetInnerHTML={{__html: DOMPurify.sanitize(review)}}></p>
</div>); I

DOMPurify turns untrusted
HTML in safe HTML, making it

safe to include in the page

e https://restograde.com

This restaurant is highly recommended. The Absolutely awesome

food is exquisite and the service is impeccable. <a : o
N _ N This restaurant is highly recommended.
href="https://pics.example.com">Check out my story The food is exquisite and the service is

here!<img src="none.png" onerror="alert('Go impeccable. Check out my, story here!s.
there, now!')">

@ pdr.online

Explicitly mark dangerous application features
as dangerous to raise developer awareness

@ pdr.online

Signal Messenger

:i @@ -111,7 +113,9 @@ export class Quote extends React.Component<Props, {}> {
if (text) { if (text) {
return (return (
114 - <div className="text" dangerouslySetInnerHTML={{ 116 + <div className="text">
__html: text }} />
117 + <MessageBody text={text} />
e+ </div>
););
by by
pI

@) pdr.online https://github.com/signalapp/Signal-Desktop/commit/4e5c8965ff72576a9e20850dd30d9985f4073192#diff-8bba204372da85d8cceed81278b7eec

Explicitly marking dangerous features prevents
accidental mis-use, but does not magically enable
developers to use the feature securely

@ pdr.online

How can we check if our application is

using dangerouslySetinnerHTML securely?

$ semgrep --config "p/react"

pdr.online

$ semgrep --config "p/react"

Scanning 16 files tracked by git with 6 Code rules:
Scanning 3 files with 6 js rules.
100% 0:00:00

src/App.js
typescript.react.security.audit.react-dangerouslysetinnerhtml. react-dangerouslysetinnerhtml
Detection of dangerouslySetInnerHTML from non-constant definition. This can inadvertently
expose users to cross-site scripting (XSS) attacks if this comes from user-provided
input. If you have to use dangerouslySetInnerHTML, consider using a sanitization library
such as DOMPurify to sanitize your HTML.
Details: https://sg.run/rAx6

62| <p dangerouslySetInnerHTML={{__html: profile.bio}}></p>

¥/ pdr.online

import DOMPurify from 'dompurify’;

return (<div>

<h3>{ title }</h3>

<p dangerouslySetInnerHTML={{__html: DOMPurify.sanitize(review) }}></p>
</div>);

import DOMPurify from 'dompurify’;

return (<div>

<h3>{ title }</h3>

<p dangerouslySetInnerHTML={{__html: sanitizeHtml(profile.bio)}}></p>
</div>);

¥ pdr.online

$ semgrep --config "p/react"

Scanning 16 files tracked by git with 6 Code rules:
Scanning 3 files with 6 js rules.
100% 0:00:00

src/App.js
typescript.react.security.audit.react-dangerouslysetinnerhtml. react-dangerouslysetinnerhtml
Detection of dangerouslySetInnerHTML from non-constant definition. This can inadvertently
expose users to cross-site scripting (XSS) attacks if this comes from user-provided
input. If you have to use dangerouslySetInnerHTML, consider using a sanitization library
such as DOMPurify to sanitize your HTML.
Details: https://sg.run/rAx6

62| <p dangerouslySetInnerHTML={{__html: sanitizeHtml(profile.bio)}}></p>

¥/ pdr.online

$ semgrep --config "p/react"

Scanning 516 files tracked by git with 6 Code rules:
Scanning 123 files with 6 js rules.
100% 0:00:00

src/App.js
typescript.react.security.audit.react-dangerouslysetinnerhtml. react-dangerouslysetinnerhtml
Detection of dangerouslySetInnerHTML from non-constant definition. This can inadvertently
expose users to cross-site scripting (XSS) attacks if this comes from user-provided
input. If you have to use dangerouslySetInnerHTML, consider using a sanitization library
such as DOMPurify to sanitize your HTML.
Details: https://sg.run/rAx6

62| <p dangerouslySetInnerHTML={{__html: sanitizeHtml(profile.bio)}}></p>

¥/ pdr.online

import SafeHtml from './SafeHtml';

return (<div>

<h3>{ title }</h3>

<SafeHtml element="p" html={{review}}></SafeHtml>
</div>);

import React from 'react’;
import DOMPurify from 'dompurify’;

// This function will render HTML safely using DOMPurify
function SafeHtml({ element, html }){
return React.createElement(element, {
dangerouslySetInnerHTML: { __html: DOMPurify.sanitize(html) }
});
}
export default SafeHtml;

@ pdr.online

Offering the right abstractions absolves
developers of the responsibility to apply detailed
secure coding guidelines

@ pdr.online

$ semgrep --config "p/react"

Scanning 516 files tracked by git with 6 Code rules:
Scanning 123 files with 6 js rules.
100% 0:00:00

Ran 6 rules on 123 files: 0 findings.

¥/ pdr.online

Encapsulating security behavior and using proper
tooling makes it easier to apply
security best practices at scale

@ pdr.online

JUUT

EnCOded PASTE ATOKEN HERE DeCOded EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

eyJhbGci0iJIUzITNiISInRScCI6IkpXVCJ9.ey

J1c2VyIjoiZTcyZDFhMjZmNDBINGU4NzKk5Njcil {

L. "alg": "HS256",
CJBZWS5hbnQi0iJkOGNmMM2ZhMzAxYTMOYzk20DUw "typ”: "JWT"
MmE3MDUxYmZkYzBhOCIsImlhdCI6MTYyMDESMjY }
ONDkXNCwiZXhwIjoxNjIwMTk2MjQeBO0TEBTQ.bnd

PAYLOAD: DATA
YFgq1sHD-
vH8h11ARD8MOUZgoALThQu7CURkuSVs (

“tenant”: "d8cf3fa381a34c968502a7651bfdceas8"”,

I "user": "e72d1a26f40e4e879967",

"iat": 1620192644914,
The base64-encoded "exp": 1620196244914

header and payload,
along with the signature

VERIFY SIGNATURE
R } X HMACSHA256 (
The SIgnature IS cruaal base64UrlEncode(header) + "." +
to ensure the integrity Of p=——=@ base64UrlEncode(payload),
the header and payload SuperSecretHMACKey

) [secret base64 encoded

¢ pdr.online

Apache Pulsar bug allowed account takeovers in
certain configurations

Ben Dickson

Y OERSD

Software maintainers downplay real-world impact of JWT vulnerability

@? pdr.online https://portswigger.net/daily-swig/apache-pulsar-bug-allowed-account-takeovers-in-certain-configurations

v -y 4 HEEE ...on/src/main/java/org/apache/pulsar/broker/authentication/AuthenticationProviderToken. java LI,:I

" @@ -172,9 +172,7 @@ private static String validateToken(final String token) throws AuthenticationExc

172 @SuppressWarnings ("unchecked") 172 @SuppressWarnings ("unchecked")

173 private Jwt<?, Claims> authenticateToken(final 173 private Jwt<?, Claims> authenticateToken(final
String token) throws AuthenticationException { String token) throws AuthenticationException {

174 try { 174 try {

175 - Jwt<?, Claims> jwt = Jwts.parser() 175 + Jwt<?, Claims> jwt =

Jwts.parserBuilder().setSigningKey(validationKey).build()
.parseClaimsJws (token);

176 - .setSigningKey(validationKey)

177 - .parse(token);

178 176

179 if (audienceClaim != null) { 177 if (audienceClaim != null) {

180 Object object = 178 Object object =
jwt.getBody().get(audienceClaim); jwt.getBody().get(audienceClaim);

)

@) pdr.online https://github.com/apache/pulsar/pull/9172/commits/94247dac93542bbcb45fb7104f7204363aad7441

Jwts.parserBuilder()
.setSigningKey(key)
.build()

.parse

(VaVaVve'avavs

Q parse(String jwt) : Jwt JwtParser.parse(String jwt) : Jwt
@ parse(String jwt, JwtHandler<T> handler) : T

@ parseClaimsJws(String claimsJws) : Jws<Claims>

@ parseClaimsJwt(String claimsJwt) : Jwt<Header,Claims>
Q@ parsePlaintextJws(String plaintextJws) : Jws<String>

@ parsePlaintextJwt(String plaintextJwt) : Jwt<Header,..

@ pdr.online

VESS

Parses the specified compact serialized JWT string based on the builder's current configuration state and
returns the resulting JWT or JWS instance.

<p>

<p>This method returns a JWT or JWS based on the parsed string. Because it may be cumbersome to determine if it
is a JWT or JWS, or if the body/payload is a Claims or String with {@code instanceof} checks, the

{@link #parse(String, JwtHandler) parse(String,JwtHandler)} method allows for a type-safe callback approach that

may help reduce code or instanceof checks.</p>

@param jwt the compact serialized JWT to parse
@return the specified compact serialized JWT string based on the builder's current configuration state.

@throws MalformedJwtException if the specified JWT was incorrectly constructed (and therefore invalid).
Invalid
JWTs should not be trusted and should be discarded.

@throws SignatureException if a JWS signature was discovered, but could not be verified. IJWTs that fail

signature validation should not be trusted and should be discarded.

@throws ExpiredJwtException if the specified JWT is a Claims JWT and the Claims has an expiration time
before the time this method is invoked.

@throws IllegalArgumentException if the specified string is {@code null} or empty or only whitespace.

@see #parse(String, JwtHandler)

@see #parsePlaintextJwt(String)

@see #parseClaimsJwt(String)

@see #parsePlaintextJws(String)

X X X X K K X X X X X K K K X X X X X X ¥ X *

@see #parseClaimsJws(String)
*/
Jwt parse(String jwt) throws ExpiredJwtException, MalformedJwtException, SignatureException, IllegalArgumentException;

@) pdr.online https://github.com/jwtk/jjwt/blob/master/api/src/main/java/io/jsonwebtoken/IwtParser.java

DeCOded EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

typ": "JWT

PAYLOAD: DATA

{
‘'user": "e72d1a26f40e4e879967",
'tenant”: "d8cf3fa301a34c968562a7051bfdcea8”,
‘iat”: 1620192644914,
‘exp”: 1620196244914
}

alg: none

¥ pdr.online

alg: none

eyJhbGc101Jub251IiwidHlwIjo1S1dUINn®G

eyJzdWIi0iIxMjMONTY30DkwIiwibmFtZSI6IkpvaGa
gRGILIiwiaWFOIjoxNTE2MjM5MDIyFQ

@ pdr.online

JSON Web Token Attacker

JOSEPH - JavaScript Object Signing and Encryption Pentesting Helper

This extension helps to test applications that use JavaScript Object Signing and Encryption, including JSON Web Tokens.
Features

» Recognition and marking

» JWS/JWE editors

* (Semi-)Automated attacks
o Bleichenbacher MMA
o Key Confusion (aka Algorithm Substitution)
o Signature Exclusion

» Base64url en-/decoder

» Easy extensibility of new attacks

Author Dennis Detering

Version 1.0.2

Rating 77 77 77 Yo7 77

Popularity I

Last updated 08 February 2019

You can install BApps directly within Burp, via the BApp Store feature in the Burp Extender tool. You can also download them from here, for offline installation
into Burp.

@.7 pdr.online https://portswigger.net/bappstore/82d6c60490b540369d6d5d01822bdf61

Ben Knight Senior Security Consultant April 16, 2020

NoNe

: NONe

JSON Web Token Validation Bypass in AuthO

Authentication API a -l_ g : n 0 n E

Ben discusses a JSON Web Token validation bypass issue disclosed to AuthO
in their Authentication API.

@7 pdr.online https.//insomniasec.com/blog/auth0-jwt-validation-bypass

Test your applications to ensure JWTs with
"alg:none" are rejected.

@ pdr.online

AppSec is too hard!

Jwts.parserBuilder()
.setSigningKey(key)
build()

.parse

MANANANS

Q@ parse(String jwt) : Jwt JwtParser.parse(String jwt) : Jwt
Q@ parse(String jwt, JwtHandler<T> handler) : T

@ parseClaimsJws(String claimsJws) : Jws<Claims>

@ parseClaimsJwt(String claimsJwt) : Jwt<Header,Claims>
@ parsePlaintextJws(String plaintextJws) : Jws<String>

Q) parsePlaintextJwt(String plaintextJwt) : Jwt<Header,..

@ pdr.online

WHAT DOES IT TAKE TO HANDLE A JWT CORRECTLY?

Choosing the JWT signature scheme

HMAGCs or digital signatures?

Deciding on the signing algorithm
RS256, PS256, ES256, or EADSA?

Verifying the validity of the JWT

® Correctly verifying the signature

—o Checking the timestamps (nbf and exp)

—e Checking the issuer and audience claims (iss and aud)

@ pdr.online

WHAT DOES IT TAKE TO HANDLE A JWT CORRECTLY?

Choosing the JWT signature scheme

Deciding on the signing algorithm

Verifying the validity of the JWT

Using key identifiers to support key rotation

Using explicit JWT typing to avoid token confusion attacks

@ pdr.online

7 Ways to Avold JWT Security Pitfalls

Posted on December 22, 2021 by Mark Dolan

share: 1 E3 @3

Posted in

Dec 22nd 2021. Author: Dr. Philippe de Ryck, Pragmatic Web Security,

CQ? pdr.online https://42crunch.com/7-ways-to-avoid-jwt-pitfalls/

Claims claims =
Security.verifyAuthenticationToken(token);

¢ pdr.online

Offering the right abstractions absolves
developers of the responsibility to apply detailed
secure coding guidelines

@ pdr.online

@ pdr.online

The Show Must Go On: Securing
Netflix Studios At Scale

Netflix Technology Blog @
.Sep13-11minread oa@@ [:\T

Written by Jose Fernandez, Arthur Gonigberg, Julia Knecht, and Patrick

Thomas

In 2017, Netflix Studios was
hitting an inflection point from

gTsFLISX a period of merely rapid growth

to the sort of explosive growth
that throws “how do we scale?”
into every conversation. The
vision was to create a “Studio in
the Cloud”, with applications
supporting every part of the
business from pitch to play. The
security team was working
diligently to support this effort,
faced with two apparently

contradictory priorities:

https://netflixtechblog.com/the-show-must-go-on-securing-netflix-studios-at-scale-19b801c86479

Incorporate security in the entire lifecycle,
from setup to development to deployment.

Getting security "for free" with reqular tasks makes everything better!

@ pdr.online

KEY TAKEAWAYS

1 Security awareness and coding guidelines are only the beginning

2 Encapsulate security behavior to simplify your codebase

3 Leverage tooling to scale security across your organization

Reach out to discuss
how | can help you with security

https://pragmaticwebsecurity.com

