
with Dr. Philippe De Ryck

Introduction to OAuth 2.0 and OIDC

Session 1

PDF of the slides: https://bit.ly/2Am8vl3

2

Pragmatic Web Security

Providing practical security knowledge to developers and architects

- Ph.D. in web security

- Founder of Pragmatic Web Security

DR. PHILIPPE DE RYCK

In-depth training courses and security advisory services

- Course curator of the SecAppDev course
(https://secappdev.org)

@PHILIPPEDERYCK
HTTPS://PRAGMATICWEBSECURITY.COM

Security cheat sheets and detailed articles

PRACTICALITIES

?
Ask questions through

the Zoom Q&A

!
Use the Zoom chat
if there is a problem

Recording will be
published online

@PhilippeDeRyck

INTRODUCTION

A RESTAURANT
REVIEW APPLICATION

FRONTEND AND
MOBILE APPLICATIONS

YOU DON'T NEED OAUTH 2.0 AND OPENID CONNECT

• Many applications are small and uncomplicated
• Frontend and API share the same level of trust
• There is no need for insane scalability

• There is nothing wrong with cookie-based sessions
• Cookies are supported by every browser
• Modern server frameworks all still support cookies
• Strict cookie security settings address common issues
• Sticky sessions or session replication support scalability

• Keep it simple when you can!

A RESTAURANT
REVIEW APPLICATION

FRONTEND AND
MOBILE APPLICATIONS

APIS TO EMPOWER
PARTNER SITES

AN APPLICATION FOR FOODIES

SUPPORTS INTEGRATION
WITH RESTOGRADE

! OAuth 2.0 offers an authorization
framework to support complex applications

13

Authenticate the user for me?

Can I access the API please?

Can you handle this for me please?

Help me out here,
is this client allowed to do that?

OpenID Connect

OAuth 2.0

OAuth 2.0

OAuth 2.0

TERMINOLOGY

Security Token Service (STS) Authorization Server OpenID Provider

API Resource Server

User Resource Owner End-User

Client Client Relying Party

This course OAuth 2.0 OpenID Connect

THE VALUE OF OAUTH 2.0 AND OPENID CONNECT

• Complex application architectures will benefit from OAuth 2.0 and OIDC
• A centralized Security Token Service governs all interactions
• Users, clients, and APIs all trust this Security Token Service

• The Security Token Service is the glue keeping it all together
• The STS offers centralized user authentication with OIDC
• The STS enables uniform authorization between clients and APIs with OAuth 2.0

• How do you know if you need OAuth 2.0 and OIDC?
• If you want to implement a Single Sign-On system
• If you have an elaborate ecosystem of clients and APIs that need to be decoupled
• If your application has extensive scalability needs
• If your application is likely to hit these needs in the near future

SESSION OUTLINE

THE CONCEPTUAL IDEA OF OAUTH 2.0 AND OIDC

BACKEND WEB CLIENTS

MOBILE CLIENTS

FRONTEND WEB CLIENTS

ADDITIONAL OAUTH 2.0 FLOWS

WRAPPING UP

@PhilippeDeRyck

THE CONCEPTUAL IDEA OF OAUTH 2.0 AND OIDC

1 Request user
reviews

2 Hmm, no

3
Request user
reviews with
credentials

4 You must be joking

1 Can I have your Restograde username and password?

2 Oh sure, philippe and Fries&Beer!

Not my real password

8 Here you go!

2 Who are you? Authenticate please!

4 Allow virtualfoodie.com access?

5 Authorize access by virtualfoodie.com

3 Authenticate to restograde.com

1Who is the user, and
can I access their reviews?

6 Yup, we're all good. Here is an
identity token and an access token

7
Request user
reviews with
access token

OpenID Connect

OAuth 2.0

OAUTH 2.0 AND OPENID CONNECT

• OAuth 2.0 enables a user to delegate access to a client application
• OAuth 2.0 itself does not offer authentication or authorization
• OAuth 2.0 specs only describe how to handle delegation and handle tokens
• OAuth 2.0 has built-in mechanisms to support permissions and consent

• OpenID Connect allows a client to offload authentication to an identity provider
• OIDC is a specific protocol that handles the delegation of authentication
• The result of an OIDC flow is information about the user's authentication

• Information contains a timestamp, a user ID, optional profile information, …

• Neither of the specifications defines how the user authenticates to the STS
• The STS is free to decide how authentication should happen

! When using OAuth 2.0 & OIDC, a user
should only authenticate to the Security
Token Service, never anywhere else.

DEPLOYMENT MODELS FOR A SECURITY TOKEN SERVICE

Augment your user
management service

with OAuth 2.0 & OIDC

Offload all
responsibilities to

"Identity as a Service"

A standalone service
handling OAuth 2.0, OIDC,

and user management

@PhilippeDeRyck

BACKEND WEB CLIENTS

A BACKEND CLIENT SCENARIO

The Virtual Foodie
server is the OAuth 2.0

client

IT ALL STARTS WITH CLIENT REGISTRATION

• Client registration is essential to secure OAuth 2.0 flows
• Configure the available flows for a particular client
• Setup client permissions and advanced authorization mechanisms
• Register the URIs that are used to send sensitive information to

• Essential to prevent an attacker from running a flow with a malicious redirect URI
• Oauth 2.1 only allows exact matching and prohibits the use of wildcards in redirect URIs

• Confidential clients need to register to setup client credentials
• Simplest form is a shared secret string that acts as a password
• Advanced authentication mechanisms rely on cryptographic keys

• E.g., mTLS or JWT-based authentication by proving possession of a private key

CLIENT REGISTRATION

CLIENT REGISTRATION

• Clients need to be registered with the STS
• Who is responsible for registering a client depends on the type of system

• Open systems (e.g., Google, Github, …) can be self-managed by client developers
• Closed systems (e.g., enterprise STS) are managed by an admin team

• During client registration, the client receives a unique client ID
• Client registration also requires specifying client redirect URIs

• Backend clients also receive client credentials for authentication
• These clients are also known as confidential clients

• Confidential clients run in an environment where they can securely store sensitive credentials
• Typical client credentials are the client ID and client secret

• Basically a username and password for the client
• Stronger key-based authentication mechanisms are also supported by the specifications

3
Follow redirect to

restograde.com

2 Redirect to restograde.com

1 Connect my restograde account

4 Who are you? Authenticate please!

6 Allow virtualfoodie.com access?

7 Authorize access by virtualfoodie.com

5 Authenticate to restograde.com

9 Follow redirect with authorization code

10
Exchange

authorization code
with client credentials

11 Access token & refresh token

8 Redirect to virtualfoodie.com
with authorization code

12 Request with
access token

13 Response

THE AUTHORIZATION CODE FLOW

The redirect URI

1
2
3
4
5
6

https://sts.restograde.com/authorize
?response_type=code
&client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
&scope=read
&redirect_uri=https://virtualfoodie.com/callback
&state=s0wzojm2w8c23xzprkk6

Indicates the authorization code flow
The client requesting access

Where the STS should send the token

2 3

The callback URI

1
2
3

https://virtualfoodie.com/callback
?code=SplxlOBeZQQYbYS6WxSbIA
&state=s0wzojm2w8c23xzprkk6

8 9

The authorization code
The callback URI from before

The request to exchange the authorization code

1
2
3
4
5
7
8

POST https://sts.restograde.com/oauth/token

grant_type=authorization_code
&client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
&client_secret=6ODRv0g…OVOSWI
&redirect_uri=https://virtualfoodie.com/callback
&code=SplxlOBeZQQYbYS6WxSbIA

10

Indicates the code exchange request
The client exchanging the code

The code received in step 9
The redirect URI used before
The client needs to authenticate to the STS

The response from the Security Token Service

1
2
3
4
5
6

{
"access_token": "eyJhbGciO...du6TY9w",
"token_type": "Bearer",
"expires_in": 3600,
"refresh_token": "8xLOxBtZp8"

}

11

The access token to access APIs

The refresh token
The expiration time of the access token

Full disclosure: I am a happy Auth0 user. I am also working closely with the Auth0 developer advocates as an
Ambassador and Expert. I am not paid by Auth0, nor do I benefit from recommending Auth0 to others.

Running an Authorization Code flow

3
Follow redirect to

restograde.com

2 Redirect to restograde.com

1 Connect my restograde account

4 Who are you? Authenticate please!

6 Allow virtualfoodie.com access?

7 Authorize access by virtualfoodie.com

5 Authenticate to restograde.com

9 Follow redirect with authorization code

10
Exchange

authorization code
with client credentials

11 Access token & refresh token

8 Redirect to virtualfoodie.com
with authorization code

12 Request with
access token

13 Response

THE AUTHORIZATION CODE FLOW

3
Follow redirect to

restograde.com

2 Redirect to restograde.com

1 Connect my restograde account

4 Who are you? Authenticate please!

6 Allow virtualfoodie.com access?

7 Authorize access by virtualfoodie.com

5 Authenticate to restograde.com

9 Follow redirect with authorization code

10
Exchange

authorization code
with client credentials

11 Access token & refresh token

8 Redirect to virtualfoodie.com
with authorization code

12 Request with
access token

13 Response

LONG-TERM ACCESS WITH THE AUTHORIZATION CODE FLOW

The STS maintains a
cookie-based session

with the browser

The refresh token allows to get fresh
tokens without user interaction

THE REFRESH TOKEN FLOW

3
Request new access token

with refresh token
and client credentials

4 Access token

1 Request with
access token

2 Token expired

5 Request with
new access token

6 Response

The request to exchange a refresh token for an access token

1
2
3
4
5
7

POST https://sts.restograde.com/oauth/token

grant_type=refresh_token
&client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
&client_secret=6ODRv0g…OVOSWI
&refresh_token=8xLOxBtZp8

3

Indicates the refresh token flow
The client exchanging the code

The refresh token obtained during the flow
The client needs to authenticate to the STS

The response from the Security Token Service

1
2
3
4
5

{
"access_token": "eyJhbGciO...du6TY9w",
"token_type": "Bearer",
"expires_in": 3600,

}

4

The access token to access APIs

The expiration time of the access token

REFRESH TOKENS AND THE REFRESH TOKEN FLOW

• The Refresh Token flow allows a client to obtain a new access token
• Refresh tokens give a client long-term access on behalf of the user
• Refresh tokens are used by the client and consumed by the STS

• Refresh tokens are sensitive and require adequate protection
• Confidential clients need to authenticate when using a refresh token
• Clients need to protect refresh tokens in storage

• Encrypt before storing and preferably keep in a separate service and data store
• Advanced defenses include binding the token to the sender and refresh token rotation

• The STS has full control over the properties of refresh tokens
• The STS can decide to give a client a refresh token, along with the lifetime of the refresh token
• Clients often use the offline_access scope to indicate they would like a refresh token

• This scope value is originally defined in the OIDC spec, but typically also applies to OAuth 2.0

Running an Refresh Token flow

THE OAUTH 2.0 AUTHORIZATION CODE FLOW

• The client is a backend web application, running in a secure environment
• The user authorizes the client to access APIs on their behalf
• The Authorization Code flow gives the client an access token and refresh token

• The access token is used by the client to access APIs on behalf of the user
• The refresh token allows the client to obtain new access tokens, without user involvement

• The Authorization Code flow has several security measures built-in
• The client needs to be registered with the proper redirect URIs
• The client needs to authenticate on backchannel requests to the STS

• Concretely, client authentication is needed to exhange an authorization code or refresh token
• Authorization codes can only be used once in a very limited time window

Login with Restograde

3
Follow redirect to

restograde.com

2 Redirect to restograde.com

1 Login with restograde

4 Who are you? Authenticate please!

6 Allow virtualfoodie.com access?

7 Authorize access by virtualfoodie.com

5 Authenticate to restograde.com

9 Follow redirect with authorization code

10
Exchange

authorization code
with client credentials

11 Access token & refresh token

8 Redirect to virtualfoodie.com
with authorization code

12 Request user info
with access token

13 User information

PSEUDO-AUTHENTICATION WITH OAUTH 2.0

14 Use information to
authenticate the user

3
Follow redirect to

restograde.com

2 Redirect to restograde.com

1 Login with restograde

4 Who are you? Authenticate please!

6 Allow virtualfoodie.com access?

7 Authorize access by virtualfoodie.com

5 Authenticate to restograde.com

9 Follow redirect with authorization code

10
Exchange

authorization code
with client credentials

11 Access token & refresh token

8 Redirect to virtualfoodie.com
with authorization code

12 Request user info
with access token

13 User information

PSEUDO-AUTHENTICATION WITH OAUTH 2.0

14 Use information to
authenticate the user

Every provider has their own idea
of how and where to retrieve

user information from

3
Follow redirect to

restograde.com

2 Redirect to restograde.com

1 Login with restograde

4 Who are you? Authenticate please!

6 Allow virtualfoodie.com access?

7 Authorize access by virtualfoodie.com

5 Authenticate to restograde.com

9 Follow redirect with authorization code

10
Exchange

authorization code
with client credentials

11 Access token & refresh token

8 Redirect to virtualfoodie.com
with authorization code

12 Request user info
with access token

13 User information

PSEUDO-AUTHENTICATION WITH OAUTH 2.0

14 Use information to
authenticate the user

Access tokens enable delegated
access, but do not represent the

intent of authentication

3
Follow redirect to

restograde.com

2 Redirect to restograde.com

1 Login with restograde

4 Who are you? Authenticate please!

6 Allow virtualfoodie.com access?

7 Authorize access by virtualfoodie.com

5 Authenticate to restograde.com

9 Follow redirect with authorization code

10
Exchange

authorization code
with client credentials

11 Access token & refresh token

8 Redirect to virtualfoodie.com
with authorization code

12 Request user info
with access token

13 User information

PSEUDO-AUTHENTICATION WITH OAUTH 2.0

14 Use information to
authenticate the user

Access tokens have an API as
target audience, allowing token
injection to force authentication

3
Follow redirect to

restograde.com

2 Redirect to restograde.com

1 Login with restograde

4 Who are you? Authenticate please!

6 Allow virtualfoodie.com access?

7 Authorize access by virtualfoodie.com

5 Authenticate to restograde.com

9 Follow redirect with authorization code

10
Exchange

authorization code
with client credentials

11 Access token & refresh token

8 Redirect to virtualfoodie.com
with authorization code

12 Request user info
with access token

13 User information

PSEUDO-AUTHENTICATION WITH OAUTH 2.0

14 Use information to
authenticate the user

Authentication is not only login,
but also session management,

logout, etc.

! Do not build authentication with OAuth 2.0,
but use OpenID Connect instead

OPENID CONNECT (OIDC)

• OIDC builds an authentication protocol on top of OAuth 2.0
• OAuth 2.0 provides the framework with a toolbox full of building blocks
• OIDC selectively picks the required building blocks to implement authentication

• OIDC adds a large number of features, but most commonly used are…
• Identity tokens to support authentication on top of an OAuth 2.0 flow
• The Userinfo endpoint to obtain information about the authenticated user
• Issuer discovery, allowing the automatic configuration of client applications
• Session management features, such as change detection and logout

• OIDC uses OAuth 2.0 under the hood, so both are often used together
• Authenticate the user with OIDC and access APIs with the OAuth 2.0 access token

3
Follow redirect to

restograde.com

2 Redirect with openid scope

1 Login with restograde

4 Who are you? Authenticate please!

6 Share info with virtualfoodie.com?

7 Authorize access by virtualfoodie.com

5 Authenticate to restograde.com

9 Follow redirect with authorization code

10
Exchange

authorization code
with client credentials

11 Identity token, access token &
refresh token

8 Redirect to virtualfoodie.com
with authorization code

13 Request with
access token

14 Response

THE AUTHORIZATION CODE FLOW WITH OIDC

12 Use information from identity
token to authenticate the user

Running an OIDC Authorization Code flow

IDENTITY TOKENS

• Identity tokens contain information about the user's authentication
• The token is a signed JWT with a set of claims about the user and the authentication
• The token is signed by the issuer, which is the Security Token Service

• There are a number of mandatory claims that are always present
• sub: a unique identifier for this user within the realm of the STS
• iss: the identifier of the issuer of the token (i.e., the STS)
• aud: the target audience of the identity token (i.e., the client application)
• exp: the expiration date of the identity token

• The application can use the information in the identity token for authentication
• Link the user with this particular sub to a user within the application

USER REGISTRATION WITH OPENID CONNECT

User DB of the Virtual Foodie backend

ID Name Sub

1 alice auth0|8c34361ea1c8bff697e3a81e

USER REGISTRATION WITH OPENID CONNECT

ID Name Sub

1 alice auth0|8c34361ea1c8bff697e3a81e

2 philippe auth0|5eb916c258bdb50bf20366c6

User DB of the Virtual Foodie backend

The sub value uniquely
identifies the user
within the issuer

The user is created
with the information

from the identity token

USER AUTHENTICATION WITH OPENID CONNECT

ID Name Sub

1 alice auth0|8c34361ea1c8bff697e3a81e

2 philippe auth0|5eb916c258bdb50bf20366c6

User DB of the Virtual Foodie backend

The sub value is used to
find the authenticated

user in the Virtual
Foodie database

The session is
populated with the

information about the
authenticated user

OIDC AND THE IDENTITY TOKEN

• OIDC allows the client to delegate authentication to a central service
• OIDC allows an application to offload the increasingly difficult authentication process
• The de facto standard to implement Single Sign-On in modern applications

• The client runs an OIDC flow to obtain an identity token
• The client uses scopes to indicate the required information (openid, profile, email, …)
• The identity token contains information about the user's authentication
• The iss claim identifies the STS and the sub claim identifies the user

• The sub claim contains the user's unique identifier within the realm of the STS
• The identifier does not change during the lifetime of the user within the STS
• The identifier can be matched against a known user in the client application

3
Follow redirect to

restograde.com

2 Redirect with openid scope

1 Login with restograde

4 Who are you? Authenticate please!

6 Share info with virtualfoodie.com?

7 Authorize access by virtualfoodie.com

5 Authenticate to restograde.com

9 Redirect with code and identity token

11
Exchange

authorization code
with client credentials

12 Access token & refresh token

8
Redirect to virtualfoodie.com
with authorization code
and identity token

13 Request with
access token

14 Response

THE OIDC HYBRID FLOW

10
Use information from identity
token to authenticate the user

THE OIDC HYBRID FLOW

• The OIDC hybrid flow allows a client to obtain the identity token faster
• The identity token is delivered through the frontchannel instead of the backchannel
• The OAuth 2.0 tokens are still delivered through the backchannel

• The steps in the Hybrid flow are almost identical to the Authorization Code flow
• The flow is initialized with the "code id_token" response type
• The redirect back to the client contains the identity token in the URL
• The identity token contains the hash of the authorization code to protect flow integrity

• The Hybrid flow is being phased out in favor of the Authorization Code flow
• The benefits from getting the identity token sooner are limited to non-existent
• The implementation of identity token validation in the client is crucial yet difficult

BEST PRACTICES FOR BACKEND APPLICATIONS

• Backend applications can use OAuth 2.0 and OIDC in isolation or in combination
• E.g., authentication only (OIDC), API access only (OAuth 2.0), or both

• Respect the purpose and intented audience of the tokens
• Identity tokens are intended for the client, to handle authentication
• Access tokens are used by the client and sent to APIs to authorize requests
• Refresh tokens are used by the client and sent to the STS to obtain new tokens

• Tokens are sensitive data and should be handled securely
• Encrypt tokens before storing them
• Preferably store tokens in a separate service
• Do not request or store tokens that are not needed

• E.g., one-shot API access does not require a refresh token

OVERVIEW OF BEST PRACTICES

Authorization Code flow

Refresh tokens with
client authentication

Encrypt tokens
in storage

@PhilippeDeRyck

MOBILE CLIENTS

A NATIVE CLIENT SCENARIO WITH A MOBILE APPLICATION

The mobile application
is the OAuth 2.0 client

System browser with
ability to re-use sessions

Access to secure storage areas on
the device, allowing the client to

store sensitive tokens securely

The redirect between the
browser and the app can be

intercepted by a malicious app

Bundled and deployed on the
client, so incapable of protecting

a client secret

Access to a system browser with
full session support, enabling a

uniform redirect-based UX

2
Follow redirect to

restograde.com

1 Navigate browser to restograde.com

3 Who are you? Authenticate please!

5 Allow the restograde app access?

6 Authorize access

4 Authenticate to restograde.com

8 Follow redirect with authorization code

9
Exchange

authorization code
without client credentials

10 Access token & refresh token

7 Redirect to the restograde app
with authorization code

11 Request with
access token

12 Response

CHALLENGES WITH THE AUTHORIZATION CODE FLOW ON MOBILE

2
Follow redirect to

restograde.com

1 Navigate browser to restograde.com

3 Who are you? Authenticate please!

5 Allow the restograde app access?

6 Authorize access

4 Authenticate to restograde.com

8 Follow redirect with authorization code

7 Redirect to the restograde app
with authorization code

CHALLENGES WITH THE AUTHORIZATION CODE FLOW ON MOBILE

10Exchange
authorization code

11 Access token & refresh token

12Exchange
authorization code

13 Error

9Steal authorization code

3
Follow redirect to restograde.com

with code challenge

2 Open restograde.com with code challenge

4 Who are you? Authenticate please!

6 Allow the restograde app access?

7 Authorize access

5 Authenticate to restograde.com

10 Follow redirect with authorization code

11
Exchange

authorization code
with code verifier

13 Identity token, access token &
refresh token

9 Redirect to the restograde app
with authorization code

15 Request with
access token

16 Response

THE AUTHORIZATION CODE FLOW WITH PKCE

1
Generate code verifier and

Calculate code challenge

8 Store code challenge
with the authorization code

12 Check code verifier against
stored code challenge

14 Use information from identity
token to "authenticate" the user

PROOF KEY FOR CODE EXCHANGE (PKCE)

• PKCE ensures that the same client intializes and finalizes the flow
• The main use case for PKCE is to prevent authorization code theft in public clients
• PKCE acts as a one-time password for a particular client instance

• PKCE consists of a code verifier and a code challenge
• The code verifier is a cryptographically secure random string

• Between 43 and 128 characters of this character set: [A-Z] [a-z] [0-9] - . _ ~
• The code challenge is a base64 urlencoded SHA256 hash of the code verifier

• The hash function uniquely connects the code challenge to the code verifier
• The code verifier cannot be derived from the code challenge

• PKCE is mandatory for native clients to prevent authorization code theft

The redirect URI

1
2
3
4
5
6
7
8

https://sts.restograde.com/authorize
?response_type=code
&client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
&scope=read
&redirect_uri=https://app.restograde.com/callback
&state=s0wzojm2w8c23xzprkk6
&code_challenge=JhEN0Amnj7B…Wh5PxWitZYK1woWh5PxWitZY
&code_challenge_method=S256

Indicates the authorization code flow
The client requesting access

Where the STS should send the token

2 3

The PKCE code challenge
The PKCE hash function

The request to exchange the authorization code

1
2
3
4
5
7
8

POST https://sts.restograde.com/oauth/token

grant_type=authorization_code
&client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
&redirect_uri=https://app.restograde.com/callback
&code=SplxlOBeZQQYbYS6WxSbIA
&code_verifier=lT5q6nbPQRtdj…~IUdkErVDFG.fF4z7CzCxo

10

Indicates the code exchange request
The client exchanging the code

The code received in step 9
The redirect URI used before

The code verifier from step 1

Running an Authorization Code flow with PKCE

THE AUTHORIZATION CODE FLOW WITH PKCE

• The client is a public native application, running on a user device
• OAuth 2.0 enables the user to authorize the client to access APIs on their behalf
• OIDC allows the client to obtain authentication information about the user
• The use of PKCE is crucial to tie the flow to one particular client instance
• Clients should use claimed HTTPS URLs to restrict the redirect mechanism

• Native clients should always run the flow in a system browser
• Either a full browser, or the integrated SFSafariViewController / Chrome Custom Tabs

• Public clients are allowed to obtain refresh tokens from the STS
• Public clients have no credentials, so refresh tokens can be used without auhtentication
• Refresh tokens must be stored securely on the device

• Token encryption and the use of isolated storage are important to protect the tokens

OVERVIEW OF BEST PRACTICES

Authorization Code flow
with PKCE

Authorization Code flow

Refresh tokens with
client authentication

Refresh tokens without
client authentication

Encrypt tokens
in storage

Encrypt tokens
in storage

OVERVIEW OF BEST PRACTICES

Authorization Code flow
with PKCE

Authorization Code flow
with PKCE

Refresh tokens with
client authentication

Refresh tokens without
client authentication

Encrypt tokens
in storage

Encrypt tokens
in storage

@PhilippeDeRyck

FRONTEND WEB CLIENTS

A NATIVE CLIENT SCENARIO WITH A MOBILE APPLICATION

The frontend is the
OAuth 2.0 client

The browser can
navigate to the STS

2
Follow redirect to

restograde.com

1 Navigate browser to restograde.com

3 Who are you? Authenticate please!

5 Allow the restograde app access?

6 Authorize access

4 Authenticate to restograde.com

8 Reload application with access token

7 Redirect to the restograde app
with access token

9 Request with
access token

10 Response

THE IMPLICIT FLOW

Running the Implicit flow

2
Follow redirect to

restograde.com

1 Navigate browser to restograde.com

3 Who are you? Authenticate please!

5 Allow the restograde app access?

6 Authorize access

4 Authenticate to restograde.com

8 Reload application with access token

7 Redirect to the restograde app
with access token

9 Request with
access token

10 Response

THE IMPLICIT FLOW

Access tokens are sent in the insecure
frontchannel. Refresh tokens are not

allowed in the Implicit flow.

2
Follow redirect to

restograde.com

1 Navigate browser to restograde.com

3 Who are you? Authenticate please!

5 Allow the restograde app access?

6 Authorize access

4 Authenticate to restograde.com

8 Reload application with access token

7 Redirect to the restograde app
with access token

9 Request with
access token

10 Response

THE IMPLICIT FLOW

Applications typically rewrite the URL
to remove the access token from the

fragment to prevent leakage.

! The OAuth 2.0 Security Best Practices
and OAuth 2.1 specifications deprecate
the Implicit flow

3
Follow redirect to restograde.com

with code challenge

2 Open restograde.com with code challenge

4 Who are you? Authenticate please!

6 Allow the restograde app access?

7 Authorize access

5 Authenticate to restograde.com

10 Follow redirect with authorization code

11
Exchange

authorization code
with code verifier

13 Identity token & access token

9 Redirect to the restograde app
with authorization code

15 Request with
access token

16 Response

THE AUTHORIZATION CODE FLOW WITH PKCE

1
Generate code verifier and

Calculate code challenge

8 Store code challenge
with the authorization code

12 Check code verifier against
stored code challenge

14 Use information from identity
token to "authenticate" the user

Comparing the Implicit flow to
the Authorization Code flow

THE AUTHORIZATION CODE FLOW WITH PKCE

• The client is a public frontend web application, running in the user's browser
• OAuth 2.0 enables the user to authorize the client to access APIs on their behalf
• OIDC allows the client to obtain authentication information about the user
• Both modern Single Page Applications as legacy JS pages can use this new flow
• The use of PKCE is less crucial than for mobile applications, but still mandatory

• Web frontends have no access to secure storage areas
• Even if secure storage was available, JS code needs the access token for making requests
• The execution of malicious JavaScript code is a common attack vector

• E.g., credit card skimming malware (Magecart) is often malicious JavaScript code
• When malicious JavaScript code executes, it can extract the access token

• Additional security requirements are needed for frontend OAuth 2.0 clients

ADDITIONAL SECURITY CONSIDERATIONS FOR FRONTENDS

• Prevent the execution of malicious JavaScript code at all costs
• The moment the attacker can execute JavaScript code, it's game over for your application
• Common attack vectors are Cross-Site Scripting and remote JavaScript inclusions
• Consider a defense-in-depth strategy (Content Security Policy, Subresource Integrity, …)

• Do not overestimate the security of your storage solution
• LocalStorage is easy to access and often considered insecure
• SessionStorage and in-memory are common alternatives with less exposure
• However, all of them can be attacked through JavaScript

• The lifetime of access tokens should be kept as short as feasible
• Shorter token lifetimes reduce the potential window of abuse for a stolen token

? So what about refresh tokens in
browser-based applications?

3
Follow redirect to restograde.com

with code challenge

2 Open restograde.com with code challenge

4 Who are you? Authenticate please!

6 Allow the restograde app access?

7 Authorize access

5 Authenticate to restograde.com

10 Follow redirect with authorization code

11
Exchange

authorization code
with code verifier

13 Identity token, access token &
refresh token

9 Redirect to the restograde app
with authorization code

15 Request with
access token

16 Response

THE AUTHORIZATION CODE FLOW WITH PKCE

1
Generate code verifier and

Calculate code challenge

8 Store code challenge
with the authorization code

12 Check code verifier against
stored code challenge

14 Use information from identity
token to "authenticate" the user

REFRESH TOKENS IN THE BROWSER

• Refresh tokens in the browser are a new relaxation in the OAuth 2.0 specs
• Before, frontends had to rely on a silent renew flow to obtain new access tokens
• Refresh tokens offer a clean solution, but also pose a significant security risk

• A single XSS vulnerability can result in a stolen refresh token
• Refresh tokens for public clients do not require client authentication when used
• The attacker can abuse a stolen refresh token to keep requesting new access tokens

• Refresh tokens in browser applications require Refresh Token Rotation
• Each refresh token can only be used once to obtain a new access token and refresh token
• Double use of a refresh token triggers alarms and prevents future abuse

• Sensitive frontends can use a Backend for Frontend to keep tokens out of the browser

Refresh Token Rotation in action

OVERVIEW OF BEST PRACTICES

Authorization Code flow
with PKCE

Authorization Code flow
with PKCE

Authorization Code flow
with PKCE

Refresh tokens with
client authentication

Refresh tokens without
client authentication

Refresh tokens with
refresh token rotation

Encrypt tokens
in storage

Prevent malicious
JS code

Encrypt tokens
in storage

OVERVIEW OF BEST PRACTICES

Authorization Code flow
with PKCE

Authorization Code flow
with PKCE

Authorization Code flow
with PKCE

Refresh tokens with
client authentication

Refresh tokens with
refresh token rotation

Refresh tokens with
refresh token rotation

Encrypt tokens
in storage

Prevent malicious
JS code

Encrypt tokens
in storage

@PhilippeDeRyck

ADDITIONAL OAUTH 2.0 FLOWS

OAUTH 2.0 AND OIDC ARE IN CONSTANT EVOLUTION

• The original OAuth 2.0 specification defined four flows
• The Authorization Code flow: still good, but augmented with PKCE in a later specification
• The Implicit flow: no longer useful, so phasing out
• The Resource Owner Password Credentials flow: a bad practice, so has to be avoided
• The Client Credentials flow: enables machine-to-machine communication

• Additional specifications define new mechanisms or refine the details of flows
• One noteworthy specification is the Device Authorization Grant, or the Device flow

• The main flow for a user delegating access is the Authorization Code flow
• Both confidential and public clients can use this flow with PKCE

5 Who are you? Authenticate please!

7 Allow the client app access?

8 Authorize access

6 Authenticate to restograde.com

1Initialize flow 2 Return URL and user code

11 Request with
access token

12 Response

THE DEVICE FLOW

3AShow URL and user code
3BStart polling for the result 9 Response with identity / access / refresh tokens

10 Authenticate user with identity
token

4 Open URL in browser

THE DEVICE FLOW

• The Device flow decouples the OAuth 2.0 flow from the user interaction
• Intended for devices that cannot run a browser or have constrained input capabilities

• E.g, smart TVs, kiosk systems, …
• The device with the brower can handle user input and advanced input mechanisms

• Enables the use of password managers and multi-factor authentication

• The client in the Device flow is still a normal client application
• It can receive anm identity token, access token, and refresh token
• The client is responsible for storing tokens securely

• The Device flow also increases security for the user
• No need to enter credentials on a potentially untrusted / shared device
• Access can always be revoked through the STS

1Request access token
with client credentials

2 Access token URL and user code

3 Request with
access token

4 Response

THE CLIENT CREDENTIALS FLOW

THE CLIENT CREDENTIALS FLOW

• The Client Credentials flow enables machine-to-machine communication
• There is no delegated access, because there is no user involved in this flow
• The Client Credentials flow allows APIs to use a uniform authorization mechanism

• The only relevant token in the Client Credentials flow is the access token
• There is no user authentication, so no need for an identity token
• The can always re-run the flow with its credentials, so no need for a refresh token

• The Client Credentials flow is often combined with strong authentication
• Clients authenticate with cryptographic credentials, such as a TLS certificate

• The client uses mTLS to authenticate to the STS and to the API when making requests
• The STS uses the access token to convey client permissions to the API

@PhilippeDeRyck

WRAPPING UP

OAUTH 2.0 AND OPENID CONNECT

• OAuth 2.0 allows a user to delegate access to a client application
• Avoids the need for sharing credentials with the client application
• Defines an authorization framework to allow APIs to make authorization decisions
• OAuth 2.0 is the de facto standard for implementing distributed authorization scenarios

• OpenID Connect allows a client to delegate authentication to a central provider
• OIDC is the de facto standard for building modern Single Sign-On systems
• OIDC uses OAuth 2.0 flows with specific configuration settings
• OAuth 2.0 and OIDC are typically used together, but can be used separately as well

• How the user authenticates to the central provider is not specified
• OAuth 2.0 and OIDC define the interactions between the different components

THREE FLOWS TO REMEMBER

• The Authorization Code flow with PKCE
• For scenarios where the user is delegating access to a client application
• Recommended best practice for confidential and public clients
• Requires the application and the system browser running on the same device

• The Device flow
• Enables a user to delegate access to a client running on an input-constrained device
• Requires explicit user interaction, so no automatic login

• The Client Credentials flow
• For scenarios where there is no user, but only code
• A uniform way to integrate authorization with machine-to-machine communication

IT'S ALL ABOUT TOKENS

• OAuth 2.0 and OIDC use three different token types and one code
• Access token: a token that represents a client's authority to access an API
• Refresh token: a token to retrieve new tokens from the STS without user interaction
• Identity token: a token with information about the user's authentication with the STS
• Authorization code: an intermediate artifact to exchange for tokens

• Access tokens and refresh tokens are extremely sensitive
• Applications need to make sure they are properly protected and securely stored
• If possible, use advanced protection mechanisms, such as token binding

• Identity tokens contain personal information, so they should also be protected

THE TIP OF THE ICEBERG

• OAuth 2.0 and OpenID Connect are extremely complex technologies
• The security of these technologies depends on small details and nuances

• Rely on SDKs and libraries to integrate these technologies into your application
• These SDKs and libraries handle most of the details out of the box
• They save a lot of time and prevent a lot of subtle security vulnerabilities

• Do not attempt to modify or change any of the OAuth 2.0 or OIDC flows
• Authentication with OAuth 2.0 is hard to implement securely, so use OIDC
• Respect the target audience of each of the tokens

• Custom solutions often ship tokens around to other parts of the application
• Doing so can causes subtle vulnerabilities

@PhilippeDeRyck

WHAT'S NEXT?

WHAT'S NEXT?

• Diving deeper into OAuth 2.0 and OpenID Connect
• Session 2 will take a close look at frontend web applications and their challenges
• Session 3 looks at how APIs handle access tokens and how to implement authorization
• Registration is still available, so don't hesitate to join us

• Rewatch the recording
• The recording will be available as a single video tomorrow
• In the coming weeks, I will process the recording and publish shorter videos

• Spread the word on this course
• Invite friends and colleagues to watch the recording and join the rest of the course

• Contact me to discuss custom advisory services for your applications

I hope you enjoyed it!
Registration for session 2 and 3 is available,

so I hope to see you again next week!

@PhilippeDeRyck /in/PhilippeDeRyck

