
JWTs should always use the appropriate signature scheme

JSON Web Tokens (JWTs) have become extremely popular. JWTs seem deceivingly simple. However, to ensure their security 
properties, they depend on complex and often misunderstood concepts. This cheat sheet focuses on the underlying concepts. 
The cheat sheet covers essential knowledge for every developer producing or consuming JWTs.

JSON Web Tokens (JWT)
Version 2020.001

Security Cheat Sheet

Introduction

 A JWT is a convenient way to represent claims securely. A 
claim is nothing more than a key/value pair. One common 
use case is a set of claims representing the user’s identity. 
The claims are the payload of a JWT. Two other parts are 
the header and the signature. 

If a JWT contains sensitive data, it should be encrypted

JWTs require proper cryptographic key management

Using JWTs for sessions introduces certain risks

Always verify the signature of JWT tokens

JWT integrity verification

Claims in a JWT are often used for security-sensitive op-
erations. Preventing tampering with previously generated 
claims is essential. The issuer of a JWT signs the token, 
allowing the receiver to verify its integrity. These signatures 
are crucial for security. 

Avoid library functions that do not verify signatures

Check that the secret of symmetric signatures is not shared

A distributed setup should only use asymmetric signatures

symmetric signatures

Symmetric signatures use an HMAC function. They are easy to 
setup, but rely on the same secret for generating and verifying 
signatures. Symmetric signatures only work well within a single 
application.

best practices

Example: The decode function of the auth0 Java JWT library

asymmetric signatures

Asymmetric signatures rely on a public/private key pair. The 
private key is used for signing, and is kept secret. The public key 
is used for verification, and can be widely known. Asymmetric 
signatures are ideal for distributed scenarios

header + payload

signature

HMACHMAC

header + payload signature

GE
N

ER
AT

E 
JW

T VERIFY JW
T

signature
SECRET KEY

header + payload
PRIVATE KEY PUBLIC KEY

DIGITAL SIGNATUREDIGITAL SIGNATURE

header + payload signature

GE
N

ER
AT

E 
JW

T VERIFY JW
T

signature

Check the exp claim to ensure the JWT is not expired

Validating JWTs

Apart from the signature, a JWT contains other security 
properties. These properties help enforce a lifetime on a 
JWT. They also identify the issuer and the intended target 
audience. The receiver of a JWT should always check these 
properties before using any of the claims.

Check the nbf claim to ensure the JWT can already be used

Check the iss claim against your list of trusted issuers

Check the aud claim to see if the JWT is meant for you

Some libraries offer support for checking these properties. Verify which 
properties are covered, and complement these checks with your own. 

Store key material in a dedicated key vault service

Cryptographic key management

 The use of keys for signatures and encryption requires 
careful management. Keys should be stored in a secure lo-
cation. Keys also need to be rotated frequently. As a result, 
multiple keys can be in use simultaneously. The application 
has to foresee a way to manage the JWT key material.

Public keys can be embedded in the header of a JWT

Validate an embedded public key with a list of known keys

The header can also contain a URL pointing to public keys

Keys should be fetched dynamically, instead of being hardcoded

Use the kid claim in the header to identify a specific key
Keys should be fetched dynamically, instead of being hardcoded

Failure to restrict keys causes an attacker’s JWT to be accepted

The jwk claim can hold a JSON Web Key-formatted public key
The x5c claim can hold a public key and X509-certificate

The jku claim can point to a file containing JSON Web Keys
The x5U claim can point to a certificate containing a public key

Validate a key URL against a safe list of URLs / domains
Failure to restrict keys causes an attacker’s JWT to be accepted

Using JWTs for authorization state

Many modern applications use JWTs to push authoriza-
tion state to the client. Such an architecture benefits from 
a stateless backend, often at the cost of security. These 
JWTs are typically bearer tokens, which can be used or 
abused by whoever obtains them.

It is hard to revoke a self-contained JWT before it expires

JWTs with authorization data should have a short lifetime

Combine short-lived JWTs with a long-lived sessionJWT Encryption is a complex topic. It is out of scope for this cheat sheet.

Alternatively verify lifetime using creation time in the iat claim 

https://courses.pragmaticwebsecurity.com

Is OAuth 2.0 and OpenID Connect causing you frustration?
Your shortcut to understanding OAuth 2.0 and OIDC is right here Best practices 

for SPAs and APIs

https://courses.pragmaticwebsecurity.com

