
Setup automated dependency checking to receive alerts

Integrate dependency checking into your build pipeline

Broken authentication2
OWASP #2

From an Angular perspective, the most important aspect of broken 
authentication is maintaining state after authentication. Many 
alternatives exist, each with their specific security considerations. 

Decide if a stateless backend is a requirement
Server-side state is more secure, and works well in most cases

Server-side session state

Use long and random session identifiers with high entropy
OWASP has a great cheat sheet offering practical advice [1]

Client-side session state

Use signatures to protect the integrity of the session state

Verify the integrity of inbound state data on the backend

Adopt the proper signature scheme for your deployment

Setup key management / key rotation for your signing keys

HMAC-based signatures only work within a single application
Public/private key signatures work well in distributed scenarios

Explicitly avoid the use of “decode-only” functions in libraries

Ensure you can handle session expiration and revocation

Cookie-based session state transport

Enable the proper cookie security properties

Protect the backend against Cross-Site Request Forgery

Set the HttpOnly and Secure cookie attributes
Add the __Secure or __Host- prefix on the cookie name

Same-origin APIs should use a double submit cookie
Cross-Origin APIs should force the use of CORS preflights by only 
accepting a non-form-based content type (e.g. application/json)

Authorization header-based session state transport

Only send the authorization header to pre-approved hosts
Many custom interceptors send the header to every host

Cross-Site Scripting3
OWASP #7

Preventing html/script injection in Angular

Use interpolation with {{}} to automatically apply escaping

Use safe property binding such as [href], [src], [style.color]

Do not use bypassSecurityTrust*() on untrusted data

Preventing code injection outside of Angular

Avoid direct DOM manipulation

Do not combine Angular with server-side dynamic pages

Use Ahead-Of-Time compilation (AOT)

Broken access control4
OWASP #5

Authorization checks

Implement proper authorization checks on API endpoints

Do not rely on client-side authorization checks for security

Check if the user is authenticated
Check if the user is allowed to access the specific resources

Cross-Origin Resource Sharing (CORS)

Prevent unauthorized cross-origin access with a strict policy

Avoid accepting the null origin in your policy
Avoid blindly reflecting back the value of the origin header

Avoid custom CORS implementations
Origin-matching code is error-prone, so prefer the use of libraries

Sensitive data exposure5
OWASP #3

Data in transit

Serve everything over HTTPS

Ensure that all traffic is sent to the HTTPS endpoint
Redirect HTTP to HTTPS on endpoints dealing with page loads
Disable HTTP on endpoints that only provide an API

Enable Strict Transport Security on all HTTPS endpoints

Data at rest in the browser

Encrypt sensitive data before persisting it in the browser

Encrypt sensitive data in JWTs using JSON Web Encryption

DISCLAIMER  This is an opinionated interpretation of the OWASP top 10 (2017), applied to frontend Angular applications. Many backend-related issues apply to the API-side of an Angular 
application (e.g., SQL injection), but are out of scope for this cheat sheet. Hence, they are omitted.

The OWASP top 10 is one of the most influential security documents of all time. But how do these top 10 vulnerabilities resonate 
in a frontend JavaScript application?
This cheat sheet offers practical advice on handling the most relevant OWASP top 10 vulnerabilities in Angular applications.

Angular and the OWASP top 10
Version 2020.001

Security Cheat Sheet

Github offers automatic dependency checking as a free service

Use npm audit to scan for known vulnerabilities

Plan for a periodical release schedule

Using dependencies with known vulnerabilities1
OWASP #9

[1] https://bit.ly/2U8kJWc

E.g. through ElementRef or other client-side libraries

Use binding to [innerHTML] to safely insert HTML data

courses@pragmaticwebsecurity.com

Looking for applicable advice on building secure Angular apps?
Reach out to discuss a practical training course on current best practices Hands-on 

training course

https://bit.ly/2U8kJWc
mailto:courses%40pragmaticwebsecurity.com?subject=Info%20on%20an%20Angular%20security%20training%20course

